Computational Linguist
Date | Salle | Lecture | Présentation |
26/3 (16h-18h) | 533 | Cours Explanations | R. Malouf |
19/3 (16h-18h) | 533 | Cours Neural Nets | R. Malouf |
12/3 (16h-18h) | 533 | Cours Information theory and word structure | R. Malouf |
5/3 (16h-18h) | 533 | Cours Item and Pattern Morphology | R. Malouf |
27/2 | 533 | Executable semantic parsing and question answering. Lecture: Cheng et al. 2019 Learning an Executable Neural Semantic Parser Computational Linguistics | B. Crabbé |
20/2 | - | Trève hivernale | - |
13/2 | 533 | Learning word and context vector representations from tree structured data,lectures : Melamud et al. 2016, Learning Generic Context Embedding with Bidirectional LSTM », Tai et al. 2015. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks | V. Segonne |
6/2 | 533 | Induire des cadres sémantiques, Lectures, Dmitry Ustalov, Alexander Panchenko, Andrey Kutuzov, Chris Biemann, Simone Paolo Ponzetto, Unsupervised Semantic Frame Induction using Triclustering, Nikolay Arefyev, Boris Sheludko, Adis Davletov, Dmitry Kharchev, Alex Nevidomsky, Alexander Panchenko Neural GRANNy at SemEval-2019 Task 2: A combined approach for better modeling of semantic relationships in semantic frame induction Ribeiro E. Teixeira A. S., Ribeiro R. and Martins de Matos D. Semantic Frame Induction as a Community Detection Problem", 2019, International Conference on Complex Networks and Their Applications | M. Candito |
30/1 | 533 | Language Modeling in the Wild. Lectures, Edoardo M. Ponti et al. Towards Zero-shot Language Modeling (2019), P. Littel et al. URIEL and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors (2017), Cotterell et al. Are All Languages Equally Hard to Language-Model? (2018) | G. Wisniewski |
23/1 | 533 | Parsing as language modelling. Lectures, C. Dyer et al, Recurrent Network Grammars (2016), B. Crabbé et al. 2019, Variable beam search for generative neural parsing | B. Crabbé |