1 Introduction

This talk proposes an interpretation of the relation between Phonology and Syntax in piece-based morphological approaches to word formation (Halle & Marantz (1993); Embick & Noyer (2007); Embick (2010); Marantz (1995, 1997, 2001) among the most important ones).

The following three observations stand as departing point:

(1) a. A central issue in such theories is the realizational process which associates a form to morphemes, i.e. Vocabulary Insertion;
 b. A morpheme is a features bundle which receives phonological content in the post-syntactic component of the Grammar, i.e. PF;
 c. Each phonological exponent which is associated to a given terminal node, is called Vocabulary Item, henceforth VI.

2 The realizational device

Statements in (1) entail that for a given feature, more than one VI may in principle match one of its values with the ones in the bundle. This is the well-known case of competition between morphemes (cf. Embick & Marantz (2008)) which is ruled out by the Subset Principle (Halle (1997)). Note that the only possible competition in these terms is at node level, and only at this point VIs are listed and checked at PF.1

English plural is taken here as an example:

(2) a. [+pl] \iff \text{zero} /\sqrt{MOOSE}, \sqrt{MOUSE}, \text{etc}.. \text{ (closed list)}.
 b. [+pl] \iff /\text{an}/ /\sqrt{OX}, \sqrt{CHILD}, \text{etc}.. \text{ (closed list)}.
 c. [+pl] \iff /\text{z}/ /\text{elsewhere}.

- The allomorph /z/ being the less specified, it is inserted only and only if a given root does not appear in either list (2-a) or (2-b).

1Space and other reasons do not let me discuss the Superset Principle and the idea that Spell-out can be phrasal. Cf. Caha (2009); Fábregas (2010); Taraldsen (2009) for such an approach.
• These are cases of *contextual allomorphy*.

• Vocabulary Insertion occurs post-syntactically.

 Consider that the allomorph /z/ (cf. (2-c)) wins the competition because the root √CAT is inserted. At PF, this gives rise to the following phonological readjustment:

\[
\begin{align*}
\text{(3)} & \quad a. \quad /z/ \rightarrow [-\text{VOICE}] / C[-\text{VOICE}] \\
& \quad b. \quad /\text{kæt}+z/ \rightarrow [\text{kæts}]
\end{align*}
\]

• This is a case of *phonological conditioned allomorphy*.\(^2\)

• These theories claim that the phonological component has rules which can account for such phenomena.\(^3\)

A number of comments and questions arise once one carefully looks at these two different allomorphy-types:

□ The fundamental architecture of this realizational device is that it splits standard morphophonology in two components of the Grammar: one syntactic and the other post-syntactic.

□ If this is the case, what is the exact border between phonological insertion syntactically conditioned (cf. (2)) and phonological insertion phonologically conditioned (cf. (3))?

□ Why do we postulate that the realization [s] of the VI [+pl] ⇐⇒ /z/ (cf. (2-c)) is a matter of phonological rules applying at PF whereas the insertion of either [z] or [ɛn] is a matter of competition at syntactic node level?

□ In splitting the phonology in such a way, we return to a number of problems which have been criticized for by SPE (Chomsky & Halle (1968)) on.

At this point, we face two opposite strategies in order to solve such an *empasse*:

\[
\begin{align*}
\text{(4)} & \quad a. \quad \text{The competition is only syntactic, hence there is no standard phonology any-} \\
& \quad \text{more.}^{4} \\
& \quad b. \quad \text{The syntax sends its features bundles at PF without ‘exceptions’.}^{5} \\
& \quad \quad (i) \quad \text{The phonology computes the representations it receives in order to create} \\
& \quad \quad \quad \text{the actual surface forms.} \\
& \quad \quad (ii) \quad \text{There is no competition at syntactic node level anymore.}
\end{align*}
\]

In this talk, I explore the latter hypothesis within the Bosnian declensional system. (5) outlines my analytical path:

\[
\begin{align*}
\text{(5) \quad The proposal} \\
& \quad a. \quad \text{Only one VI corresponds to each features matrix, and therefore surface ex-} \\
& \quad \text{ceptions are the results of}: \\
& \quad \quad (i) \quad \text{(either) phonological processes}, \\
& \quad \quad (ii) \quad \text{(or) contextual local allomorphy rules}. \\
& \quad \quad (iii) \quad \text{Both processes apply post-syntactically.}
\end{align*}
\]

\(^4\)Ferrari (2005) is a good example of such a view.

3 The declension in Bosnian

Bosnian nouns\(^6\) show an interesting alternation, mainly vocalic, throughout the declen- sional system.

\[(6)\] Bosnian data

<table>
<thead>
<tr>
<th></th>
<th>group 1</th>
<th>group 2</th>
<th>group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>M</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>number</td>
<td>sg.</td>
<td>pl.</td>
<td>sg.</td>
</tr>
<tr>
<td>NOM</td>
<td>okvir</td>
<td>okvir-i</td>
<td>kuc-a</td>
</tr>
<tr>
<td>GEN</td>
<td>okvir-a</td>
<td>okvir-a</td>
<td>kuc-(\acute{e})</td>
</tr>
<tr>
<td>DAT/LOC</td>
<td>okvir-u</td>
<td>okvir-ima</td>
<td>kuc-(\acute{i})</td>
</tr>
<tr>
<td>ACC</td>
<td>okvir-(a)(^7)</td>
<td>okvir-e</td>
<td>kuc-(\acute{u})</td>
</tr>
<tr>
<td>VOC</td>
<td>okvir-e</td>
<td>okvir-i</td>
<td>kuc-(\acute{o})</td>
</tr>
<tr>
<td>INSTR</td>
<td>okvir-om</td>
<td>okvir-ima</td>
<td>kuc-(\acute{om})</td>
</tr>
<tr>
<td>glosses</td>
<td>‘frame’</td>
<td>‘frames’</td>
<td>‘house’</td>
</tr>
</tbody>
</table>

- Bosnian is generally conservative as far as morphology is considered: seven cases have been preserved and there is a good correlation between a gender and a given declensional paradigm (Cf. Corbett & Browne (2008) for an overview).
- (6) follows a gender-based classification.
- All the nouns in group 1 are M(asculine).
- All the nouns in group 3 are Neu(ter).
- As for group 2, the overwhelming majority of nouns are F(eminine).

First note two crucial facts:

\[(7)\]

a. The only phonologically zero marker is M sg. NOM (cf. footnote 7)\(^9\)

b. Gender/number/case markers are almost exclusively formed by \textbf{ONE} vowel. When a consonant appears:

(i) only /m/ is allowed in case endings,

(ii) whenever there is a /m/, it is followed either by zero (sg.) or by -a (pl.).

\(^6\)As Browne (1993); Corbett & Browne (2008) point out, Serbo-Croatian (which belongs to (West) South-Slavic group) is one single literary language which has three major dialect groups: Čakavian, Kajkavian and Štokavian. The disaggregation of Yugoslavia and the political issues related to this fact, made each independent newly-born Republic make distinctions within the standard language. As my informant comes from Bosnian-Herzegovina, I will refer to Serbo-Croatian as to simply Bosnian.

\(^7\)M nouns are marked by -a in sg. ACC only when the referent is animate.

\(^8\)VOC will be skipped in the rest of the paper, because its nature as a full syntactic case has never been demonstrated.

\(^9\)Since Jakobson (1948), the most accepted interpretation of such a zero in Slavic declensional systems, consists in an underlying yer-vowel which is deleted by a rule. Cf. Halle & Nevins (2009) for a more recent account.
Now, note that if the correlation between the gender and the groups as in (6) holds true, then the two statements in (8) follow:

(8)
 a. Gender is overtly marked on nouns by \textbf{ONE} vowel;10
 b. Gender coincides with declension.

The hypothesis below follows:

(9)
 a. The final vowel on each noun in (6), marks gender, number and case.
 b. I call this vowel V_{FIN}.

4 The abstractness of the phonological component

Observations in (7) and statements in (8) rise a few important questions about the nature and the role of V_{FIN}:

(10)
 a. On the underlying structure of V_{FIN}:
 (i) Is it a \textit{port-manteau} morpheme?
 (ii) Is it an internally-structured morpheme?
 b. On the role played by such an object:
 (i) Is it a phonological object?
 (ii) Is it a syntactic object?

How can our data be accounted for by piece-based morphological theories?
I follow Embick (2010) among others in stemming from the structure below:

(11) Basic structures and complex heads

\[
\begin{array}{c}
\text{KP} \\
\text{K} \\
\text{numP} \\
\text{num} \\
\text{nP} \\
\text{n} \\
\sqrt{\text{ROOT}} \\
\text{num} \\
\text{K} \\
\text{num} \\
\text{n} \\
\sqrt{\text{ROOT}} \\
\text{n}
\end{array}
\]

cf. Calabrese (1998); Halle (1992, 1997); Halle & Vaux (1998); Müller (2004); Weisser (2006) for accounts on declensional systems in several unrelated languages.

10Standard Serbo-Croatian is generally considered to have distinctive long-short vocalic oppositions as well as a pitch accentuation as illustrated by Matešić (1970): there are a falling and a rising accent which can both be short or long. Then vowels vary according to length and pitch. In particular, falling short accent occurs only on the first syllable of a word, hence monosyllabic ones can have only a falling accent. But no accent can occur in the final vowel. In addition, Magner & Matejka (1971) demonstrated that this system is not so well preserved for many speakers (including my informant) which tend not to distinguish length on unstressed vowels. As gender/number/case markers are always unstressed, I will not be concerned with such a phonological issue anymore and the length given in (6) has only illustrative purposes.
4.1 On the nature of Vfin

Let me concentrate on the following observations (Halle & Marantz (1994) or Embick & Noyer (2007) for a review on DM principles):

(12) a. Structures such as the one in (11) predict that one feature matrix (a morpheme) corresponds to each terminal node (A DM general principle, indeed).

b. If this is the case, how can we account for the mismatch between the structure (THREE nodes/morphemes) and the surface where ONE vowel (VFIN) appears?

c. We need some operation in order to associate ONE vowel (VFIN) to THREE nodes/morphemes.

d. DM offers a tools called Fusion.

 (i) Fusion applies on nodes, in such a way that two (or more) different nodes are re-written by a rule under a unique node.

 (ii) In our case, n, num, and K would be merged into a unique head, letting the insertion of a VI of the form [GEN, -pl, -F] \[\iff\] [a], for example.\(^{11}\)

 (iii) Note that such a list of VI’s fails to capture the fact that VFIN is formed by ONE vowel.\(^{12}\)

e. Such an analytical path corresponds to the answer to the question above, cf. (10-a-i).

What if we look these things from a reverse angle, by hypothesizing that VFIN DOES have a complex structure?\(^{13}\)

(13) VFIN is an internally-structured morpheme:

 a. It has a complex phonological structure.

 b. Each node/morpheme in the structure (11) corresponds to a phonological object contained by VFIN.

 c. Such an option constitutes the answer to the question (10-a-ii).

Let me explore the hypothesis in (13), and observe the following arrangement of the data:

(14) Bosnian vocalic endings

<table>
<thead>
<tr>
<th></th>
<th>group 1</th>
<th>group 2</th>
<th>group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>Neu</td>
</tr>
<tr>
<td></td>
<td>sg.</td>
<td>pl.</td>
<td>sg.</td>
</tr>
<tr>
<td>NOM</td>
<td>zero</td>
<td>i</td>
<td>a</td>
</tr>
<tr>
<td>GEN</td>
<td>a</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>DAT/LOC</td>
<td>u</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>ACC</td>
<td>(a)</td>
<td>e</td>
<td>u</td>
</tr>
<tr>
<td>INSTR</td>
<td>o</td>
<td>i</td>
<td>o</td>
</tr>
</tbody>
</table>

\(^{11}\)Cf. Weisser (2006) for such a list of VI’s for Croatian.

\(^{12}\)Cf. Bendjaballah (2003) for a similar critique.

\(^{13}\)Bendjaballah (2003) pointed out that piece-based morphological theories don’t exploit a crucial property of phonological items, namely that they can have an internal structure.
By hypothesis (13), each VFIN in (14) must be the results of THREE underlying morphemes (cf. Halle & Nevins (2009) for a very similar underlying sequence):

(15) Root + Gender + Number + Case

From (15), one can clearly consider that the phonological zero appearing at M sg. NOM is a three zero-morphemes sequence:

(16) a. Gender: M gender is marked by zero (henceforth: ø).
 b. Number: sg. number is marked by zero.
 c. Case: NOM case is marked by zero.

But still, we need a theoretical tool in order to decompose each VFIN. It turns out that the Theory of Elements (Kaye et al. (1985, 1990), henceforth TE) makes interesting predictions on the internal composition of vowels:

(17) a. Each surface vocalic segment is in fact the result of a complex fusion between basic matrix Elements;
 b. In TE terms, this gives rise to the following combinations in a five-vowel language such as Bosnian:
 (i) [a]=/A/
 (ii) [i]=/I/
 (iii) [u]=/U/
 (iv) [e]=/I.A/
 (v) [o]=/U.A/

4.2 Bosnian roots

If hypotheses in (16) hold true, then each VFIN corresponding to a NOM occurrence must be formed by (at most) two non-zero-morphemes. Hence, NOM is the less complex case.

(18) NOM again

<table>
<thead>
<tr>
<th>singular</th>
<th>gender</th>
<th>plural</th>
<th>gender</th>
<th>gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a okvir</td>
<td>M</td>
<td>okvir-i</td>
<td>M</td>
<td>‘frame(s)’</td>
</tr>
<tr>
<td>b kuć-a</td>
<td>F</td>
<td>kuć-e</td>
<td>F</td>
<td>‘house(s)’</td>
</tr>
<tr>
<td>c sel-o</td>
<td>Neu</td>
<td>sel-a</td>
<td>Neu</td>
<td>‘village(s)’</td>
</tr>
<tr>
<td>d src-e</td>
<td>Neu</td>
<td>src-a</td>
<td>Neu</td>
<td>‘hear(s)’</td>
</tr>
</tbody>
</table>

The item in (d) represents a subgroup of Neu which has been skipped in (6): these nouns display VFIN=[e] instead of [o] in NOM, VOC and ACC singulars. Hence, observe the data below, in the light of TE:

14Browne (1993) for a review on these nouns.
We need to stop and carefully look at (19) bearing in mind the hypotheses (16):

- Looking at M, we deduct that Element /I/ marks the plural, henceforth IPL.
- Looking at F, we deduct that Element /A/ marks the feminine, henceforth A.
- Both Neu sg. have the Element /A/.
- Neu pl. only has the element /A/.
- Let me take the Element /U/ as a Neu marker (henceforth U), and let me leave aside the reason for such a choice.\(^{15}\)

Assuming that gender is host by n\(^0\) and that Neu is unmarked with respect to the feature [gender] (cf. Lowenstamm (2008) among others), entails the following VIs:

\[
\begin{align*}
(20) & \\
& \text{Gender VIs} \\
& a. \quad [+\text{gender}, -\text{F}] \iff \emptyset. \\
& b. \quad [+\text{gender}, +\text{F}] \iff A. \\
& c. \quad [-\text{gender}] \iff U.
\end{align*}
\]

This brings us to the status of roots in Bosnian. For a given one, the merger with a functional head will allow the appearance of the gender exponent, cf. the following section for details.\(^{16}\)

\[
\begin{align*}
(21) & \\
& \text{Bosnian roots} \\
& a. \quad \sqrt{\text{ROOT}} \quad \text{zero} \\
& b. \quad \sqrt{\text{ROOT}} \quad A \\
& c. \quad \sqrt{\text{ROOT}} \quad U
\end{align*}
\]

To put it in a slightly different way, in (21) I show the traditional “theme vowel” (henceforth Th) as a morpheme associated to a lexical property of roots (cf. Oltra-Massuet (2000)).

\(^{15}\)As a partial answer, note that the existence of -e nouns in group 3 has been explained as the result of a palatalizing effect of the last radical consonant, namely [ts], [tf], [dz], [â], [s] and [x]. Cf. Browne (1993); Hammond (2005). I am aware of at least one counterexample: more ‘sea’.

\(^{16}\)Cf. the discussion on diacritics on roots Acquaviva (2009); Embick & Halle (2005); De Belder et al. (2010) among others.
4.3 Noun structures

- I follow Lowenstamm (2008, 1996) with respect to the fact that syllable structure is underlyingly CVCV..

- Each terminal node can possibly be associated to one CV syllable. Roots bear their own CVCV.. tier.

- At PF, a Th-node is inserted as an adjunct to each functional node, in order to host the phonological objects.\(^\text{17}\)

- I arrange Halle (1997) featural decomposition to manage case morphemes.

(22) Case features

<table>
<thead>
<tr>
<th>Case Type</th>
<th>Oblique</th>
<th>Structural</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>oblique</td>
<td>+structural</td>
<td>+superior</td>
</tr>
<tr>
<td>ACC</td>
<td>oblique</td>
<td>+structural</td>
<td>-superior</td>
</tr>
<tr>
<td>GEN</td>
<td>+oblique</td>
<td>+structural</td>
<td>-superior</td>
</tr>
<tr>
<td>DAT/LOC</td>
<td>+oblique</td>
<td>α structural</td>
<td>+superior</td>
</tr>
<tr>
<td>INSTR</td>
<td>+oblique</td>
<td>-structural</td>
<td>-structural</td>
</tr>
</tbody>
</table>

4.3.1 M and F nouns

I show the structures for *okvir* ‘frame’ (native lexicon), *tabure* ‘stool’ (oxyton, loan from French) and *kuća* ‘house’.

(23) Structure and complex head for *okvir* ‘frame’.

\(^{17}\) Cf. Lampitelli (2009) for as to why CVCV phonology must be preferred in such a system, and for a theoretical discussion on this architecture.
(24) Complex head for *taburei* ‘stools’.

Note that this example gives an independent motivation for the existence of a CV adjoined to K-node: only the phonological material associated to CVCV cluster can surface in such a framework. Cf. below for details, 4.4.

(25) Complex head for *kuće* ‘houses’.
4.4 Autosegmental representations

Below the detail of the representation for each noun shown in the preceding subsection:

(26) \(\text{okvir} \) M sg. NOM; \(\text{taburei} \) M pl. NOM and \(\text{kuće} \) F pl. NOM.

\[
\begin{array}{ccc}
\phi & \phi & A \\
\text{okvir} & \text{taburei} & \text{kuće} \\
\text{CVCVCVCV} & \text{CVCVCVCV} & \text{CVC}
\end{array}
\]

Recall the questions on the role \(\text{Vfin} \) plays: (10-b). The answer is now clear: \(\text{Vfin} \) is a complex phonological object which points to syntactic terminal nodes.

5 The machinery

Observe column 1 in (14). Then recall hypotheses in (16) as well as TE, cf. (17). We are able to create a complete list of VI’s which apply on Bosnian nouns:

(27) VI’s for Bosnian nouns

a. \([-\text{pl}] \iff \text{zero}\)

b. \([+\text{pl}] \iff \text{IPL}\)

c. \([-\text{gen}] \iff \text{U}\)

d. \([+\text{gen}, -\text{F}] \iff \text{zero}\)

e. \([+\text{gen}, +\text{F}] \iff \text{A}\)

f. \([-\text{oblique}, +\text{structural}, +\text{superior}] \iff \text{zero}\)

g. \([-\text{oblique}, +\text{structural}, -\text{superior}] \iff \text{A}\)

h. \ [+\text{oblique}, +\text{structural}, -\text{superior}] \iff \text{U}\)

i. \ [+\text{oblique}, \alpha \text{structural}, +\text{superior}] \iff \text{U}\)

j. \ [+\text{oblique}, -\text{structural}, -\text{superior}] \iff \text{A.U}\)

- These items represent a unique spell-out for each possible features bundle the structure contains.
- They combine each other and surface as phonological complex objects: \(\text{Vfin} \).
- They are not in competition amongst them.
- This list is more economic than Weisser (2006), for instance.
- This machinery is more constraint than a standard DM one, in particular with respect to the relation between morphemes and their context of insertion.\(^{18}\)

Recall a few important points:

- Observe that ACC is spelled-out as the Element A, throughout the system.

\(^{18}\)Cf. again Bendjaballah (2003).
Hypothesis: NOM-ACC syncretism is explained by neutralizing the feature \([\text{superior}]\): \([-\text{oblique}, +\text{structural}, \alpha \text{ superior}]\).\(^{19}\)

(28) Complex head for \textit{selo} ‘village’.

\[
\begin{array}{c}
\text{K} \\
\text{K} \quad \text{Th} \\
\text{num} \quad \text{K} \quad \text{CV} \\
\text{num} \quad \text{Th} \\
n \quad \text{num} \\
\sqrt{\text{ROOT}} \quad n \quad \text{Th} \\
\text{U} \\
\text{sel} \\
\text{CVCV} \\
\end{array}
\]

[selo], Neu, sg, NOM and ACC

5.1 The other cases: from GEN to INSTR

Given the underlying structure (15) and the VI’s in (27), we predict that each VFIN is formed by a sequence of three Elements (eventually zero). The following table illustrates such a situation:

(29) Underlying \textbf{predicted} morpheme-sequences

<table>
<thead>
<tr>
<th></th>
<th>group 1</th>
<th>group 2</th>
<th>group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>Neu</td>
</tr>
<tr>
<td>NOM</td>
<td>(___)</td>
<td>(____)</td>
<td>(____)</td>
</tr>
<tr>
<td>GEN</td>
<td>(____)</td>
<td>(______)</td>
<td>(_______)</td>
</tr>
<tr>
<td>DAT/LOC</td>
<td>(______)</td>
<td>(________)</td>
<td>(_________)</td>
</tr>
<tr>
<td>ACC</td>
<td>(_______)</td>
<td>(_________)</td>
<td>(__________)</td>
</tr>
<tr>
<td>INSTR</td>
<td>(_________)</td>
<td>(___________)</td>
<td>(____________)</td>
</tr>
</tbody>
</table>

- As for white cells, predictions are borne out: the results are correctly derived.
- As for light and dark grayed cells, a mismatch between predicted VFIN and the observed one occurs.

\(^{19}\)This can also explain M sg. NOM-ACC syncretism, too.
• Compare each colored cell with its corresponding one in the table below.

(30) Underlying **observed** morpheme-sequences

<table>
<thead>
<tr>
<th></th>
<th>group 1</th>
<th>group 2</th>
<th>group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>Neu</td>
</tr>
<tr>
<td>sg. NOM</td>
<td>Ø</td>
<td>Ipl</td>
<td>A</td>
</tr>
<tr>
<td>sg. GEN</td>
<td>A</td>
<td>A.I</td>
<td>A.A</td>
</tr>
<tr>
<td>pl. DAT/LOC</td>
<td>Upl</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>sg. ACC</td>
<td>(A) Ipl.A</td>
<td>U</td>
<td>Ipl.A</td>
</tr>
</tbody>
</table>

• Light gray cells **ALL** display Ipl.

• Dark gray cells **overwhelmingly** display the element /A/.

• F pattern is the most problematic one.

5.2 Phonology vs. Allomorphy

I propose to explore two different paths to solve the above mentioned mismatches:

• Light gray cells can be explained within TE.

• Dark gray cells can be explained as the results of Allomorphy rules.

5.2.1 Light gray cells

• TE explains that in a five-vowel language as Bosnian, the Element /I/ and the Element /U/ are represented on the same abstract level.

• This prohibits front rounded vowels such as [y] or [ø] from existing.

• If /U/ and /I/ are forced to be close at the same level of representation, the phonology disallows any fusion between these two Elements (or more of the same kind).

• Hence, only **ONE** vowel surfaces. Between /I/ and /U/, the general trend is that /I/ surfaces.\(^{20}\)

5.2.2 Dark gray cells

• As for these cells, I postulate the existence of a set of allomorphy rules (Embick (2010)).

• These rules apply post-syntactically and operate on phonological strings.

• The *conditio sine qua non* for such rules is locality.

\(^{20}\)Cf. loan *bīro* ‘office’ from French *b[ø]ro*. Cf. Passino (2009) and Lampitelli (Forth.) for a similar situation in Italian nouns.
Locality depends on the architecture of the complex heads underlying each noun and on the cyclicity of the derivation.

(31) A list of allomorphy rules (non-exhaustive):
 a. AR1: $\text{Element} \rightarrow \text{zero} / A_{[-\text{oblique},+\text{structural},-\text{superior}]}$.
 b. AR2: $\text{Element U} \rightarrow \text{zero} / I_{\text{pl}}$.
 c. AR3: $A_{[-\text{oblique},+\text{structural},+\text{superior}]} \rightarrow \text{zero} / \sqrt{\text{inanimatereferents}}$.

(32) Explication:
 a. AR1 applies in the context of GEN, which has been recognized to have particular status in Slavic (Bailyn & Nevins (2008) for a recent analysis).
 b. AR2 erases U in Neu pl.
 c. AR3 applies in sg. M ACC whenever the adjacency of A to the root is satisfied, note that at pl. M ACC this rule can NEVER apply as there is an intervening object, namely IPL.

Further research must provide a full set of allomorphy rules. Cf. Lampitelli (2009) for a few more.21

6 Conclusions and final remarks

Accepting such a proposal entails that:

- The phonological component is slightly more abstract than in standard DM terms.
- A bigger number of forms must be explained on a strict phonological ground.
- There is an actual one-to-one correspondence between a terminal node and a phonological object.
- As an extreme consequence, nor Subset Principle neither Fusion must be postulated anymore.

However, a few remarks are crucial:

- This architecture is possibly universal, but it still needs to be checked on a bigger number of languages.22
- The idea that phonological Elements in TE terms can possibly be interpreted as morphemes must be ascribed to Ségéral (1995).

21In particular, allomorphy rules explain the presence of F nouns in group 1 and M nouns in group 2, respectively (\textit{stvar} ‘thing’ and \textit{sudija} ‘judge’).

22Cf. Ségéral & Scheer (2001) note the same point: a more abstract phonology allows for more generalizations on data.
References

