Natural language syntax: parsing and complexity

Timothée Bernard and Pascal Amsili

Université Paris Cité, Université Sorbonne Nouvelle
timothee.bernardQu-paris.fr, pascal.amsili@ens.fr

Ljubljana, Slovenia — August 7-11, 2023
ESSLLI foundational course in Language and Computation

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

Overview of the course

Day 1: Formal languages and syntactic complexity.
Day 2: The complexity of natural language.

Day 3: Historic algorithms for parsing.

Day 4: Modern approaches to parsing.

Day 5: Neural networks and error propagation.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 0000000000000

Day 5

Timothée Bernard and Pascal Amsili L syntax: parsing and complexity 3/27

[DEVAS)
000000000000 0000000000000

Recap from Day 4

An ML component (classifier/scorer) can replace a grammar.
This is possible both in transition and chart parsing.

Doing so requires data (usually treebanks).

Dependency parsing is popular; either transition- or
graph-based.

@ For CCG and TAG: the supertagging+decoding paradigm
combines a classifier and a grammar.

@ Grammar-based parsing can be convenient for compositional
semantics.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
00@0000000000000000000000

Today's contents

The basics of neural networks.

How neural networks in general are trained.

°
°
@ How neural parsers in particular are trained.
@ Why and how token embeddings are useful.
°

Error propagation in transition parsers and how to fight it.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
00000000000 0000000000000

Machine learning is used to infer functions

@ Today: heavy use of machine learning in parsing to power
classifiers/scorers.

e Machine learning (ML): computational inference of
functions from data.

@ Goal: good enough approximation of usually fairly abstract
and unknown functions.
Ex: image classification, offensive language detection

@ In practice: generalisable approximation of a finite
[raw data — annotation] function.

@ Kinds of functions: classification functions, clustering
functions, real-valued functions. . .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000e00000000000000000000

Neural networks work with vectors

@ Neural network:

e one of the most popular ML frameworks;
e based on vector transformation.

Vector (in ML): sequence of values of fixed length
Ex: [2.1,0.33,-9.25,0.0,1.1] € R®

One n-input neuron: R” — R

m n-input neurons: R” — R™
— layer of width m

A neural network (NN) may be seen as a graph (DAG) of
layers.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000008000000 0000000000000

In the beginning are word embeddings

@ Input vectors?
@ For most layers, output vectors of previous layers.

e Otherwise: vector representations of (all or part of) the input
of the problem.

@ In NLP: word embeddings represent tokens.

Word2Vec (Mikolov et al. 2013)

GloVe (Pennington, Socher & Manning 2014)

fastText (Bojanowski et al. 2017)

BERT (Devlin et al. 2019)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000800000 0000000000000

Linear layers are one of the basic building blocks of NNs

n-input “linear” neuron

parameters: 6 = ((aj)1<i<n, b) € R" xR

input: u = (uj)1<i<n € R"
output: (3.7 aixu)+beR

“Linear” layer of width m: m linear neurons in parallel.

In general, one wants to approximate a non-linear function.
— NNs contain many linear layers followed by non-linearity
functions.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000 e00000000000000000

Element-wise non-linearities: RelL,U and o

@ Rectified linear unit (ReLU): x — max(x,0)

e Sigmoid (0): x — m
) /
////
/
2 /

@ — applied element-wise to get non-linear layers
@ Often found after every linear layer save the last one.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000 0e0000000000000000

Softmax is used to generate probability distribution

Neural classifiers produce probability distributions.

Done by ending with a softmax layer.

input: u = (uj)1<i<n € R"

output: p = (%)19‘9 eR”

— p describes a probability distribution s.t. if u; < u; then p; < p;

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000 e000000000000000

There is an NN design for every situation

@ By stacking linear and non-linear layers on top of each other,
one can build a very expressive R" — R™ network.
@ Other modules (averaging, LSTM, attention, etc.):

e from a variable-length sequence of vectors to a single vector;

e from a single vector to a variable-length sequence of vectors;

e from a variable-length sequence of vectors to a sequence of
same length;

o ...

@ All defined in terms of small set of fairly simple vector
operations.

@ From simplicity emerges complexity.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000 0@00000000000000

Basic NN design is dictated by the flow of information

First stages of a typical NLP system:
e conversion of the input text into a sequence of (static) word
embeddings;
e enrichment into contextual word embeddings.
@ To represent a stack: use a variable-length sequence to single
vector module.

@ (idem for a buffer)

@ To represent a parsing state: concatenation of relevant
vectors.

@ To represent a candidate dependency: concatenate the
embeddings of the two tokens.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
00000000000 e0000000000000

The importance of representations cannot be overstated

e For most NLP tasks (e.g. parsing), relatively little annotated
data is available compared to the complexity of the task.

@ Consequence: overall performance is highly dependant on the
word representations used (i.a. Pennington, Socher & Manning
2014, Peters et al. 2018, Devlin et al. 2019).

@ Past: lexicons with rich symbolic lexical features

e Now: token representations obtained from statistical /neural
methods trained on massive data (see slide 8).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 e000000000000

Lexical and sentential information is found in embeddings

@ Word embeddings often contain morpho-syntactic and
semantic information (i.a. Kéhn 2015, Gupta et al. 2015, Gaddy,
Stern & Klein 2018).

o Contextual embeddings in particular also contain information
about syntax and sentence semantics (Tenney et al. 2019).
@ Neural language models (e.g. BERT):
e mainly used to produce context embeddings;
e trained with a language modelling task (i.e. word prediction in
context);

o implicitly learn to perform many NLP tasks? (Tenney, Das &
Pavlick 2019)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000000000 e00000000000

Designing NNs that train easily is an art

@ NNs are often trained by gradient descent.

@ Intuitively: repeatedly tweaking a little bit the parameters so
that the output gets closer to the intended value (i.e. in the
direction of the gradient).

@ Loss: how far the output is from the intended value.

— usually, more than one possibility
@ (The parameters can be initialised randomly.)
@ Many design choices only aim at making this process possible

and effective.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000000000 0e0000000000

Make the score/probability of the gold tree the highest

@ Here are simple losses for some of the parsers mentioned
during Day 4.

@ Transition-based parser: opposite of the probability of a gold
derivation (i.e. product of the probability of each action).

Graph-based parser: difference between the score of the
predicted tree (i.e. sum of the score of each dependency) and the
score of the gold tree.

Scorer-based CYK parser: similar.

Many improvements are possible.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000e000000000

Overfitting is a common plague in ML

@ Today's NNs have relatively many parameters compared to
the size of the training data.

e Consequence: the loss can be very low (on the train. data),
yet the performance can be unsatisfying (on the test. data).
— overfitting (general problem in ML)

e General solutions: regularisation methods (e.g. L1/L2,
dropout).
o Relatively little work on data augmentation and domain

adaptation for parsing (but see e.g. Baucom, King & Kiibler
2013).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 0000e00000000

Another plague for sequential systems: error propagation

o Error propagation: when one mistake leads to more mistakes.

@ Common in transition-based parsing.

@ One reason: errors lead to unusual states (different from the
ones seen at training) — classifiers/scorers become unreliable

@ Can be fought at training and/or testing time.

e Example in the structured perceptron paradigm (Collins
2002): not only strengthen a gold derivation, but also weaken
the predicted one.

— deviation from teacher forcing

(this idea alone does not define the paradigm)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 00000e0000000

Explore multiple trajectories with beam search

o Beam search:
e introduced by Lowerre (1976) for speech recognition;
o heavily used in transition parsing;
e consists in exploring multiple derivations in parallel.
@ Beam of size k:
e stores up to k distinct partial derivations (AKA hypotheses);
e at each step,

o look at all possible continuations of all current hypotheses,
o select the k best ones overall as the new content of the beam;

e at the end, return the best derivation in the beam.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000000000 00000e000000

lllustration of beam search with a maze (introduction)

@ Edges of equal length.

@ Goal: find a short path in the
maze (discovered in the
process).

@ Rule: the same vertex cannot be
visited more than once.
— no backtracking

@ Comparison of greedy search vs
beam search (k = 2).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

[DEVAS)
000000000000 0000000e00000

lllustration of beam search with a maze (greedy search)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

[DEVAS)
0000000000000 0000000e0000

lllustration of beam search with a maze (beam search)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the barn

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the barn fell

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the barn fell.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the barn fell.

@ There are several strategies to improve training when using a
beam (Collins & Roark 2004, Huang, Fayong & Guo 2012).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 0000000000e00

Forget about gold derivations

e Dynamic oracle (DO; Goldberg & Nivre 2012):

e given any parsing state, what are the best actions?

e known for some (i.e. Arc-Eager) but not all (i.e.
Arc-Standard) transition systems;

o used to train a parser on its own trajectories.

e Reinforcement learning (RL; Sutton & Barto 2018, L& &
Fokkens 2017):

o define a reward system (i.e. action taken — scalar reward);

e run the system on training data;

o a loss is defined in terms of the rewards;

e — by minimising the loss, the expected sum of rewards is
maximised.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 00000000000e0

DO and RL can lead to more data-efficient training

@ training on a system’s own trajectories
— makes the training and testing distributions (of states)
more similar
— makes ML components more reliable/less prone to error
propagation

@ Rmk: For the same annotated data, there are many more
possible trajectories than gold trajectories.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

[DEVAS)
000000000000 000000000000e

Day 5: Summary

e Today, NNs are heavily used in parsing as classifiers/scorers.

@ NNs work by combining (many) simple linear and non-linear
vector transformations.

@ Parsing performance depends on the “quality” of token
representations.

@ Error propagation is a plague for many transition parsers.

@ It can be fought by decoding with a beam and/or by deviating
from teacher forcing.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

References

» Baucom, Eric, Levi King & Sandra Kiibler. 2013. Domain
Adaptation for Parsing. In Proceedings of the International
Conference Recent Advances in Natural Language Processing
RANLP 2013, 56—64. Hissar, Bulgaria: INCOMA Ltd. Shoumen,
BULGARIA. https://aclanthology.org/R13-1008.

» Bojanowski, Piotr, Edouard Grave, Armand Joulin &

Tomas Mikolov. 2017. Enriching Word Vectors with Subword
Information. Transactions of the Association for Computational
Linguistics 5. 135-146.
https://doi.org/10.1162/tacl_a_00051.

» Collins, Michael. 2002. Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Processing
(EMNLP 2002), 1-8. Association for Computational
Linguistics. https://doi.org/10.3115/1118693.1118694.

» Collins, Michael & Brian Roark. 2004. Incremental Parsing with
the Perceptron Algorithm. In Proceedings of the 42nd Annual

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://aclanthology.org/R13-1008
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.3115/1118693.1118694

References

Meeting of the Association for Computational Linguistics
(ACL-04), 111-118. Barcelona, Spain.
https://doi.org/10.3115/1218955.1218970.

» Devlin, Jacob, Ming-Wei Chang, Kenton Lee &

Kristina Toutanova. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short
Papers), 4171-4186. Minneapolis, Minnesota: Association for
Computational Linguistics.
https://doi.org/10.18653/v1/N19-1423.

» Gaddy, David, Mitchell Stern & Dan Klein. 2018. What's Going On
in Neural Constituency Parsers? An Analysis. In Proceedings of
the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 999-1010. New

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://doi.org/10.3115/1218955.1218970
https://doi.org/10.18653/v1/N19-1423

References

Orleans, Louisiana: Association for Computational Linguistics.
https://doi.org/10.18653/v1/N18-1091.

» Goldberg, Yoav & Joakim Nivre. 2012. A Dynamic Oracle for
Arc-Eager Dependency Parsing. In Proceedings of COLING
2012, 959-976. Mumbai, India: The COLING 2012 Organizing
Committee.
https://www.aclweb.org/anthology/C12-1059.

» Gupta, Abhijeet, Gemma Boleda, Marco Baroni & Sebastian Padé.
2015. Distributional vectors encode referential attributes. In
Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 12-21. Lisbon, Portugal:
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D15-1002.

» Huang, Liang, Suphan Fayong & Yang Guo. 2012. Structured
Perceptron with Inexact Search. In Proceedings of the 2012
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://doi.org/10.18653/v1/N18-1091
https://www.aclweb.org/anthology/C12-1059
https://doi.org/10.18653/v1/D15-1002

References

142-151. Montréal, Canada: Association for Computational
Linguistics. https://aclanthology.org/N12-1015.

» Kohn, Arne. 2015. What's in an Embedding? Analyzing Word
Embeddings through Multilingual Evaluation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, 2067—2073. Lisbon, Portugal:

Association for Computational Linguistics.
https://doi.org/10.18653/v1/D15-1246.

» L&, Minh & Antske Fokkens. 2017. Tackling Error Propagation
through Reinforcement Learning: A Case of Greedy
Dependency Parsing. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, 677—687. Valencia, Spain:
Association for Computational Linguistics.
https://www.aclweb.org/anthology/E17-1064/.

» Lowerre, Bruce T. 1976. The HARPY Speech Recognition System.
Pittsburgh, PA, USA: Carnegie Mellon University Ph.D. Thesis.
https://apps.dtic.mil/docs/citations/ADA035146.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://aclanthology.org/N12-1015
https://doi.org/10.18653/v1/D15-1246
https://www.aclweb.org/anthology/E17-1064/
https://apps.dtic.mil/docs/citations/ADA035146

References

» Mikolov, Tomas, llya Sutskever, Kai Chen, Greg S Corrado &
Jeff Dean. 2013. Distributed Representations of Words and
Phrases and their Compositionality. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 26,
3111-3119. Curran Associates, Inc.
http://papers.nips.cc/paper/5021-distributed-
representations-of-words—-and-phrases—and-their-
compositionality.pdf.

» Pennington, Jeffrey, Richard Socher & Christopher D. Manning.
2014. GloVe: Global Vectors for Word Representation. In
Empirical Methods in Natural Language Processing (EMNLP),
1532-1543.
http://www.aclweb.org/anthology/D14-1162/.

» Peters, Matthew E., Mark Neumann, Mohit lyyer, Matt Gardner,
Christopher Clark, Kenton Lee & Luke Zettlemoyer. 2018.
Deep Contextualized Word Representations. In Proceedings of
the 2018 Conference of the North American Chapter of the

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www.aclweb.org/anthology/D14-1162/

References

Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2227-2237. Association
for Computational Linguistics.
https://doi.org/10.18653/v1/N18-1202.

» Sutton, Richard S. & Andrew G. Barto. 2018. Reinforcement
Learning: An Introduction. Second Edition (Adaptive
Computation and Machine Learning series). MIT Press.
https://mitpress.mit.edu/books/reinforcement-
learning-second-edition.

» Tenney, lan, Dipanjan Das & Ellie Pavlick. 2019. BERT
Rediscovers the Classical NLP Pipeline. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, 4593—-4601. Florence, ltaly: Association for
Computational Linguistics.
https://doi.org/10.18653/v1/P19-1452.

» Tenney, lan, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak,
R. Thomas McCoy, Najoung Kim, Benjamin Van Durme,
Samuel R. Bowman, Dipanjan Das & Ellie Pavlick. 2019. What

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://doi.org/10.18653/v1/N18-1202
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://doi.org/10.18653/v1/P19-1452

do you learn from context? Probing for sentence structure in
contextualized word representations. In /nternational
Conference on Learning Representations.
https://openreview.net/forum?id=SJzSgnRcKX.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023

https://openreview.net/forum?id=SJzSgnRcKX

	Day 5
	References
	Appendix

