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Overview of the course

Day 1: Formal languages and syntactic complexity.

Day 2: The complexity of natural language.

Day 3: Historic algorithms for parsing.

Day 4: Modern approaches to parsing.

Day 5: Neural networks and error propagation.
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Recap from Day 4

An ML component (classifier/scorer) can replace a grammar.

This is possible both in transition and chart parsing.

Doing so requires data (usually treebanks).

Dependency parsing is popular; either transition- or
graph-based.

For CCG and TAG: the supertagging+decoding paradigm
combines a classifier and a grammar.

Grammar-based parsing can be convenient for compositional
semantics.
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Today’s contents

The basics of neural networks.

How neural networks in general are trained.

How neural parsers in particular are trained.

Why and how token embeddings are useful.

Error propagation in transition parsers and how to fight it.
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Machine learning is used to infer functions

Today: heavy use of machine learning in parsing to power
classifiers/scorers.

Machine learning (ML): computational inference of
functions from data.

Goal: good enough approximation of usually fairly abstract
and unknown functions.
Ex: image classification, offensive language detection

In practice: generalisable approximation of a finite
[raw data 7→ annotation] function.

Kinds of functions: classification functions, clustering
functions, real-valued functions. . .
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Neural networks work with vectors

Neural network:

one of the most popular ML frameworks;
based on vector transformation.

Vector (in ML): sequence of values of fixed length
Ex: [2.1, 0.33,−9.25, 0.0, 1.1] ∈ R5

One n-input neuron: Rn → R
m n-input neurons: Rn → Rm

→ layer of width m

A neural network (NN) may be seen as a graph (DAG) of
layers.
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In the beginning are word embeddings

Input vectors?

For most layers, output vectors of previous layers.

Otherwise: vector representations of (all or part of) the input
of the problem.

In NLP: word embeddings represent tokens.

Word2Vec (Mikolov et al. 2013)
GloVe (Pennington, Socher & Manning 2014)
fastText (Bojanowski et al. 2017)
BERT (Devlin et al. 2019)
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Linear layers are one of the basic building blocks of NNs

n-input “linear” neuron

parameters: θ = ((ai )1≤i≤n, b) ∈ Rn × R
input: u = (ui )1≤i≤n ∈ Rn

output: (
∑n

i=1 ai × ui ) + b ∈ R

“Linear” layer of width m: m linear neurons in parallel.

In general, one wants to approximate a non-linear function.
→ NNs contain many linear layers followed by non-linearity
functions.
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Element-wise non-linearities: ReLU and σ

Rectified linear unit (ReLU): x 7→ max(x , 0)

Sigmoid (σ): x 7→ 1
1+exp(−x)

−4 −2 2 4

0.5

1

2

4

→ applied element-wise to get non-linear layers

Often found after every linear layer save the last one.
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Softmax is used to generate probability distribution

Neural classifiers produce probability distributions.

Done by ending with a softmax layer.

Softmax

input: u = (ui )1≤i≤n ∈ Rn

output: p = ( exp(ui )∑n
j=1 exp(uj )

)1≤i≤n ∈ Rn

→ p describes a probability distribution s.t. if ui ≤ uj then pi ≤ pj
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There is an NN design for every situation

By stacking linear and non-linear layers on top of each other,
one can build a very expressive Rn → Rm network.

Other modules (averaging, LSTM, attention, etc.):

from a variable-length sequence of vectors to a single vector;
from a single vector to a variable-length sequence of vectors;
from a variable-length sequence of vectors to a sequence of
same length;
. . .

All defined in terms of small set of fairly simple vector
operations.

From simplicity emerges complexity.
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Basic NN design is dictated by the flow of information

First stages of a typical NLP system:

conversion of the input text into a sequence of (static) word
embeddings;
enrichment into contextual word embeddings.

To represent a stack: use a variable-length sequence to single
vector module.

(idem for a buffer)

To represent a parsing state: concatenation of relevant
vectors.

To represent a candidate dependency: concatenate the
embeddings of the two tokens.

. . .
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The importance of representations cannot be overstated

For most NLP tasks (e.g. parsing), relatively little annotated
data is available compared to the complexity of the task.

Consequence: overall performance is highly dependant on the
word representations used (i.a. Pennington, Socher & Manning

2014, Peters et al. 2018, Devlin et al. 2019).

Past: lexicons with rich symbolic lexical features

Now: token representations obtained from statistical/neural
methods trained on massive data (see slide 8).
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Lexical and sentential information is found in embeddings

Word embeddings often contain morpho-syntactic and
semantic information (i.a. Köhn 2015, Gupta et al. 2015, Gaddy,

Stern & Klein 2018).

Contextual embeddings in particular also contain information
about syntax and sentence semantics (Tenney et al. 2019).

Neural language models (e.g. BERT):

mainly used to produce context embeddings;
trained with a language modelling task (i.e. word prediction in
context);
implicitly learn to perform many NLP tasks? (Tenney, Das &
Pavlick 2019)
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Designing NNs that train easily is an art

NNs are often trained by gradient descent.

Intuitively: repeatedly tweaking a little bit the parameters so
that the output gets closer to the intended value (i.e. in the
direction of the gradient).

Loss: how far the output is from the intended value.
→ usually, more than one possibility

(The parameters can be initialised randomly.)

Many design choices only aim at making this process possible
and effective.
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Make the score/probability of the gold tree the highest

Here are simple losses for some of the parsers mentioned
during Day 4.

Transition-based parser: opposite of the probability of a gold
derivation (i.e. product of the probability of each action).

Graph-based parser: difference between the score of the
predicted tree (i.e. sum of the score of each dependency) and the
score of the gold tree.

Scorer-based CYK parser: similar.

Many improvements are possible.
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Overfitting is a common plague in ML

Today’s NNs have relatively many parameters compared to
the size of the training data.

Consequence: the loss can be very low (on the train. data),
yet the performance can be unsatisfying (on the test. data).
→ overfitting (general problem in ML)

General solutions: regularisation methods (e.g. L1/L2,
dropout).

Relatively little work on data augmentation and domain
adaptation for parsing (but see e.g. Baucom, King & Kübler
2013).
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Another plague for sequential systems: error propagation

Error propagation: when one mistake leads to more mistakes.

Common in transition-based parsing.

One reason: errors lead to unusual states (different from the

ones seen at training) → classifiers/scorers become unreliable

Can be fought at training and/or testing time.

Example in the structured perceptron paradigm (Collins
2002): not only strengthen a gold derivation, but also weaken
the predicted one.
→ deviation from teacher forcing
(this idea alone does not define the paradigm)
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Explore multiple trajectories with beam search

Beam search:
introduced by Lowerre (1976) for speech recognition;
heavily used in transition parsing;
consists in exploring multiple derivations in parallel.

Beam of size k:

stores up to k distinct partial derivations (AKA hypotheses);
at each step,

look at all possible continuations of all current hypotheses,
select the k best ones overall as the new content of the beam;

at the end, return the best derivation in the beam.
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Illustration of beam search with a maze (introduction)

start

end Edges of equal length.

Goal: find a short path in the
maze (discovered in the
process).

Rule: the same vertex cannot be
visited more than once.
→ no backtracking

Comparison of greedy search vs
beam search (k = 2).
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Illustration of beam search with a maze (greedy search)

start

end

+
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Illustration of beam search with a maze (beam search)
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Test and train with a beam for maximum efficiency

Beam search tends to make parsers more robust.

Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The horse raced past the barn fell.

There are several strategies to improve training when using a
beam (Collins & Roark 2004, Huang, Fayong & Guo 2012).
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Forget about gold derivations

Dynamic oracle (DO; Goldberg & Nivre 2012):

given any parsing state, what are the best actions?
known for some (i.e. Arc-Eager) but not all (i.e.
Arc-Standard) transition systems;
used to train a parser on its own trajectories.

Reinforcement learning (RL; Sutton & Barto 2018, Lê &
Fokkens 2017):

define a reward system (i.e. action taken 7→ scalar reward);
run the system on training data;
a loss is defined in terms of the rewards;
→ by minimising the loss, the expected sum of rewards is
maximised.
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DO and RL can lead to more data-efficient training

training on a system’s own trajectories
→ makes the training and testing distributions (of states)
more similar
→ makes ML components more reliable/less prone to error
propagation

Rmk: For the same annotated data, there are many more
possible trajectories than gold trajectories.
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Day 5: Summary

Today, NNs are heavily used in parsing as classifiers/scorers.

NNs work by combining (many) simple linear and non-linear
vector transformations.

Parsing performance depends on the “quality” of token
representations.

Error propagation is a plague for many transition parsers.

It can be fought by decoding with a beam and/or by deviating
from teacher forcing.
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