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Overview of the course

Day 1: Formal languages and syntactic complexity.
Day 2: The complexity of natural language.

Day 3: Historic algorithms for parsing.

Day 4: Modern approaches to parsing.

Day 5: Neural networks and error propagation.
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Recap from Day 4

An ML component (classifier/scorer) can replace a grammar.
This is possible both in transition and chart parsing.

Doing so requires data (usually treebanks).

Dependency parsing is popular; either transition- or
graph-based.

@ For CCG and TAG: the supertagging+decoding paradigm
combines a classifier and a grammar.

@ Grammar-based parsing can be convenient for compositional
semantics.
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Today's contents

The basics of neural networks.

How neural networks in general are trained.

°
°
@ How neural parsers in particular are trained.
@ Why and how token embeddings are useful.
°

Error propagation in transition parsers and how to fight it.
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Machine learning is used to infer functions

@ Today: heavy use of machine learning in parsing to power
classifiers/scorers.

e Machine learning (ML): computational inference of
functions from data.

@ Goal: good enough approximation of usually fairly abstract
and unknown functions.
Ex: image classification, offensive language detection

@ In practice: generalisable approximation of a finite
[raw data — annotation] function.

@ Kinds of functions: classification functions, clustering
functions, real-valued functions. . .
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Neural networks work with vectors

@ Neural network:

e one of the most popular ML frameworks;
e based on vector transformation.

Vector (in ML): sequence of values of fixed length
Ex: [2.1,0.33,-9.25,0.0,1.1] € R®

One n-input neuron: R” — R

m n-input neurons: R” — R™
— layer of width m

A neural network (NN) may be seen as a graph (DAG) of
layers.
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In the beginning are word embeddings

@ Input vectors?
@ For most layers, output vectors of previous layers.

e Otherwise: vector representations of (all or part of) the input
of the problem.

@ In NLP: word embeddings represent tokens.

Word2Vec (Mikolov et al. 2013)

GloVe (Pennington, Socher & Manning 2014)

fastText (Bojanowski et al. 2017)

BERT (Devlin et al. 2019)
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Linear layers are one of the basic building blocks of NNs

n-input “linear” neuron

parameters: 6 = ((aj)1<i<n, b) € R" xR

input: u = (uj)1<i<n € R"
output: (3.7 aixu)+beR

“Linear” layer of width m: m linear neurons in parallel.

In general, one wants to approximate a non-linear function.
— NNs contain many linear layers followed by non-linearity
functions.
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Element-wise non-linearities: RelL,U and o

@ Rectified linear unit (ReLU): x — max(x,0)

e Sigmoid (0): x — m
) /
////
/
2 /

@ — applied element-wise to get non-linear layers
@ Often found after every linear layer save the last one.
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Softmax is used to generate probability distribution

Neural classifiers produce probability distributions.

Done by ending with a softmax layer.

input: u = (uj)1<i<n € R"

output: p = (%)19‘9 eR”

— p describes a probability distribution s.t. if u; < u; then p; < p;
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There is an NN design for every situation

@ By stacking linear and non-linear layers on top of each other,
one can build a very expressive R" — R™ network.
@ Other modules (averaging, LSTM, attention, etc.):

e from a variable-length sequence of vectors to a single vector;

e from a single vector to a variable-length sequence of vectors;

e from a variable-length sequence of vectors to a sequence of
same length;

o ...

@ All defined in terms of small set of fairly simple vector
operations.

@ From simplicity emerges complexity.
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Basic NN design is dictated by the flow of information

First stages of a typical NLP system:
e conversion of the input text into a sequence of (static) word
embeddings;
e enrichment into contextual word embeddings.
@ To represent a stack: use a variable-length sequence to single
vector module.

@ (idem for a buffer)

@ To represent a parsing state: concatenation of relevant
vectors.

@ To represent a candidate dependency: concatenate the
embeddings of the two tokens.
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The importance of representations cannot be overstated

e For most NLP tasks (e.g. parsing), relatively little annotated
data is available compared to the complexity of the task.

@ Consequence: overall performance is highly dependant on the
word representations used (i.a. Pennington, Socher & Manning
2014, Peters et al. 2018, Devlin et al. 2019).

@ Past: lexicons with rich symbolic lexical features

e Now: token representations obtained from statistical /neural
methods trained on massive data (see slide 8).
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Lexical and sentential information is found in embeddings

@ Word embeddings often contain morpho-syntactic and
semantic information (i.a. Kéhn 2015, Gupta et al. 2015, Gaddy,
Stern & Klein 2018).

o Contextual embeddings in particular also contain information
about syntax and sentence semantics (Tenney et al. 2019).
@ Neural language models (e.g. BERT):
e mainly used to produce context embeddings;
e trained with a language modelling task (i.e. word prediction in
context);

o implicitly learn to perform many NLP tasks? (Tenney, Das &
Pavlick 2019)
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Designing NNs that train easily is an art

@ NNs are often trained by gradient descent.

@ Intuitively: repeatedly tweaking a little bit the parameters so
that the output gets closer to the intended value (i.e. in the
direction of the gradient).

@ Loss: how far the output is from the intended value.

— usually, more than one possibility
@ (The parameters can be initialised randomly.)
@ Many design choices only aim at making this process possible

and effective.
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Make the score/probability of the gold tree the highest

@ Here are simple losses for some of the parsers mentioned
during Day 4.

@ Transition-based parser: opposite of the probability of a gold
derivation (i.e. product of the probability of each action).

Graph-based parser: difference between the score of the
predicted tree (i.e. sum of the score of each dependency) and the
score of the gold tree.

Scorer-based CYK parser: similar.

Many improvements are possible.
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Overfitting is a common plague in ML

@ Today's NNs have relatively many parameters compared to
the size of the training data.

e Consequence: the loss can be very low (on the train. data),
yet the performance can be unsatisfying (on the test. data).
— overfitting (general problem in ML)

e General solutions: regularisation methods (e.g. L1/L2,
dropout).
o Relatively little work on data augmentation and domain

adaptation for parsing (but see e.g. Baucom, King & Kiibler
2013).
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Another plague for sequential systems: error propagation

o Error propagation: when one mistake leads to more mistakes.

@ Common in transition-based parsing.

@ One reason: errors lead to unusual states (different from the
ones seen at training) — classifiers/scorers become unreliable

@ Can be fought at training and/or testing time.

e Example in the structured perceptron paradigm (Collins
2002): not only strengthen a gold derivation, but also weaken
the predicted one.

— deviation from teacher forcing

(this idea alone does not define the paradigm)
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Explore multiple trajectories with beam search

o Beam search:
e introduced by Lowerre (1976) for speech recognition;
o heavily used in transition parsing;
e consists in exploring multiple derivations in parallel.
@ Beam of size k:
e stores up to k distinct partial derivations (AKA hypotheses);
e at each step,

o look at all possible continuations of all current hypotheses,
o select the k best ones overall as the new content of the beam;

e at the end, return the best derivation in the beam.
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lllustration of beam search with a maze (introduction)

@ Edges of equal length.

@ Goal: find a short path in the
maze (discovered in the
process).

@ Rule: the same vertex cannot be
visited more than once.
— no backtracking

@ Comparison of greedy search vs
beam search (k = 2).
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lllustration of beam search with a maze (greedy search)
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lllustration of beam search with a maze (greedy search)
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lllustration of beam search with a maze (beam search)
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023



[DEVAS)
000000000000 000000000e000

Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b. The
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1) a. After the student moved the chair broke.
b.  The horse
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b.  The horse raced
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past the
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past the barn
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past the barn fell
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past the barn fell.
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Test and train with a beam for maximum efficiency

@ Beam search tends to make parsers more robust.

@ Think about garden path sentences:

(1)  a. After the student moved the chair broke.
b. The horse raced past the barn fell.

@ There are several strategies to improve training when using a
beam (Collins & Roark 2004, Huang, Fayong & Guo 2012).
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Forget about gold derivations

e Dynamic oracle (DO; Goldberg & Nivre 2012):

e given any parsing state, what are the best actions?

e known for some (i.e. Arc-Eager) but not all (i.e.
Arc-Standard) transition systems;

o used to train a parser on its own trajectories.

e Reinforcement learning (RL; Sutton & Barto 2018, L& &
Fokkens 2017):

o define a reward system (i.e. action taken — scalar reward);

e run the system on training data;

o a loss is defined in terms of the rewards;

e — by minimising the loss, the expected sum of rewards is
maximised.
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DO and RL can lead to more data-efficient training

@ training on a system’s own trajectories
— makes the training and testing distributions (of states)
more similar
— makes ML components more reliable/less prone to error
propagation

@ Rmk: For the same annotated data, there are many more
possible trajectories than gold trajectories.
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Day 5: Summary

e Today, NNs are heavily used in parsing as classifiers/scorers.

@ NNs work by combining (many) simple linear and non-linear
vector transformations.

@ Parsing performance depends on the “quality” of token
representations.

@ Error propagation is a plague for many transition parsers.

@ It can be fought by decoding with a beam and/or by deviating
from teacher forcing.
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