
Day 3

Natural language syntax: parsing and complexity

Timothée Bernard and Pascal Amsili

Université Paris Cité, Université Sorbonne Nouvelle
timothee.bernard@u-paris.fr, pascal.amsili@ens.fr

Ljubljana, Slovenia – August 7-11, 2023
ESSLLI foundational course in Language and Computation

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 1 / 61

Day 3

Overview of the course

Day 1: Formal languages and syntactic complexity.

Day 2: The complexity of natural language.

Day 3: Historic algorithms for parsing.

Day 4: Modern approaches to parsing.

Day 5: Neural networks and error propagation.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 2 / 61

Day 3

Day 3

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 3 / 61

Day 3

Recap from Day 2

There are theoretical and practical reasons for determining
where NL is in the Chomsky-Schützenberger hierarchy.

center-embedding (very common) → NL is not regular

cross-serial dependencies (less common) → NL is not
context-free

Good candidates: TAG/CCG and MCFG/LCFRS/MG.

It can make sense to use much more powerful formalisms (e.g.
HPSG).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 4 / 61

Day 3

Today’s contents

Grammar-based constituency parsing algorithms with no
machine learning. (→ ML in Days 4-5)

Top-down and bottom-up naive algorithms.

The Shift-Reduce algorithm.

Chart parsing:

CYK,
Earley.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 5 / 61

Day 3

Reminder about the parsing problem

Given a grammar G on some alphabet Σ. . .

The parsing problem for G :

Given some w ∈ Σ⋆,
what are the derivations (if any) of w in G?

w is the query.

If G is a CF grammar, parsing w is equivalent to finding the
constituent trees (if any) of w .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 6 / 61

Day 3

Syntactic structure can be useful

15− 5× 3 = ?
E

E

T

F

15

− T

T

F

5

× F

3

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 7 / 61

Day 3

Syntactic structure can be useful

15− 5× 3 = 0
E (0)

T (15)

F (15)

15

− T (15)

T (5)

F (5)

5

× F (3)

3

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 7 / 61

Day 3

Syntactic structure can be useful

M3

E

+ T

F

E

T

T * F

3F

2

4

STO M1 2

STO M2 3

MUL M1 M2

STO M3 4

ADD M1 M3

M1

M2

Unless stated otherwise, we work with CF grammars from now on.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 8 / 61

Day 3

Derivation graph of a grammar

Given a grammar, one can build the directed graph such that

the nodes are the sequences of (Σ ∪ N)⋆,
the edges correspond to rewriting operations.

Example:
S → A B
A → cc

| aSa
B → b

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 9 / 61

Day 3

Derivation graph of a grammar

Given a grammar, one can build the directed graph such that

the nodes are the sequences of (Σ ∪ N)⋆,
the edges correspond to rewriting operations.

Example:
S → A B
A → cc

| aSa
B → b

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 9 / 61

Day 3

Parsing is a search in the derivation graph

Parsing w ∈ Σ∗:

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 10 / 61

Day 3

Parsing is a search in the derivation graph

Parsing w ∈ Σ∗: finding a path in the graph going from S to w .

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 10 / 61

Day 3

General parsing strategies

Two possible strategies.

Top-down: start from the axiom S .
Bottom-up: start from the query w .

It is also possible to mix top-down and bottom-up approaches.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 11 / 61

Day 3

Left derivation

Left derivation: always rewrite the leftmost non-terminal
symbol.

S ⇒ AB ⇒ ccB ⇒ ccb

S ⇒ AB ⇒ Ab ⇒ ccb

In a CFG, every syntactic structure is associated with a single
left derivation, and vice versa.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 12 / 61

Day 3

Parsing can focus on left derivations

Without loss of generality, parsing can be defined as a search
for left derivation(s) [or right].

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 13 / 61

Day 3

Parsing can focus on left derivations

Without loss of generality, parsing can be defined as a search
for left derivation(s) [or right].

S AABB

Bb bB ccA AccAB

bb ccaSa ccccccB Ab aSaB

ccb aSab aABaB

aABab aAbaB accBaB aaSaBaB

aaSaBab aAbab accBab accbaB aaSabaB

accbab

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 13 / 61

Day 3

Top-down approaches: example (I)

S → A B
A → cc

| aSa
B → b

(S ,accbab)

(AB,accbab)

(aSaB,accbab) (ccBB,accbab)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 14 / 61

Day 3

Pruning the graph with the prefix property

Suppose that S
⋆⇒ x1 . . . xkγ with x1 . . . xk ∈ Σ⋆, and

γ ∈ (Σ ∪ N)⋆.

Any word w s.t. S
⋆⇒ x1 . . . xkγ

⋆⇒ w has x1 . . . xk as a prefix:

∃u ∈ Σ⋆ s.t. w = x1 . . . xku.

S

x1 ... xk γ

u
A top-down derivation can be stopped as soon as it contains a
non-empty prefix of letters that does not match the query.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 15 / 61

Day 3

Top-down approaches: example (II)

S → A B
A → Saa

| cc
B → b

(S ,ccbaab)

(AB,ccbaab)

(SaaB,ccbaab) (ccB,ccbaab)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 16 / 61

Day 3

Top-down parsing

If the grammar is not left-recursive, we will stop at some
point.

Any CFG G1 is weakly equivalent to some non-left-recursive
CFG G2 (i.e. s.t. L(G1) = L(G2)).

But the worst-case time complexity of naive top-down parsing
is still very high.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 17 / 61

Day 3

More efficient algorithms?

S → AB
A → aa
B → b

(S ,aab)

S → aB
| B

B → bB
| ϵ
(S ,aaabb)

S → aSa
| aSb
| ϵ

(S ,abbbba)

Predictive parsing: use the next letters in the query to
better select the rewriting rules.

For some grammars, ∃k ∈ N s.t. when considering the next k
letters in the query, the choice is always reduced to a single
rule: deterministic parsing.
→ Grammars of this sort are called LL(k).

But most CF languages have no LL(k) grammar (whatever k).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 18 / 61

Day 3

Bottom-up approaches: example (I)

At each step:
“Which parts of w are identical to the right-hand side of a rule?”

S → A B
A → Saa

| cc
B → b

accba

aAbab accBab

aABab accBaB

accbaB

A parsing is a a sequence of reductions
(“rewriting inversions”)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 19 / 61

Day 3

Bottom-up approaches: example (II)

S → aSb
| ϵ

ab

Sab

SSab SSab SaSb SabS

aSb

. . .

abS

. . .

The query ab could have been produced from any S iaS jbSk .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 20 / 61

Day 3

Bottom-up approaches: example (II)

S → aSb
| ϵ

ab

Sab

SSab SSab SaSb SabS

aSb

. . .

abS

. . .

The query ab could have been produced from any S iaS jbSk .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 20 / 61

Day 3

Bottom-up approaches: example (III)

S → A | AB
A → cc | S
B → b

ccb

Ab

Sb

Ab

. . .

ccB

ccb

What about ccbb ?

Singleton rules (i.e. of the form A → B with A,B ∈ N) which may

create cycles in the grammar: X
+⇒ X .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 21 / 61

Day 3

Bottom-up approaches: example (III)

S → A | AB
A → cc | S
B → b

ccb

Ab

Sb

Ab

. . .

ccB

ccb

What about ccbb ?

Singleton rules (i.e. of the form A → B with A,B ∈ N) which may

create cycles in the grammar: X
+⇒ X .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 21 / 61

Day 3

Bottom-up approaches: example (III)

S → A | AB
A → cc | S
B → b

ccb

Ab

Sb

Ab

. . .

ccB

ccb

What about ccbb ?

Singleton rules (i.e. of the form A → B with A,B ∈ N) which may

create cycles in the grammar: X
+⇒ X .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 21 / 61

Day 3

Clean grammars

Every context-free grammar is weakly equivalent to a “clean”
context-free grammar:

No singleton rule (therefore, no cycle).
No ϵ-rule,
except a rule S → ϵ if ϵ ∈ L(G), and no rule such that S → αSβ.

With a clean grammar, the Shift-Reduce algorithm (→ next

slide) cannot fall into an infinite loop.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 22 / 61

Day 3

Shift-Reduce: a classic bottom-up algorithm

Data structures (store strings of terminal/non-terminal symbols):

stack (initially empty);

buffer (initially contains the query).

Transition system:

shift: the next letter in the buffer is transferred to the stack
(only if the buffer is non-empty);

reduce(A → α): pop α and push A on the stack (only if

A → α ∈ G and α is on top of the stack);

accept: success (only when the buffer is empty and the stack

contains only S);

reject: failure (only when no other action is possible).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 23 / 61

Day 3

Example

E → E + T
E → T
T → T × F
T → F
F → a

stack buffer action

ϵ a+ a× a

shift
a + a× a reduce (F → a)
F + a× a reduce (T → F)
T + a× a reduce (E → T)
E + a× a shift
E+ a× a shift
E + a × a reduce (F → a)
E + F × a reduce (T → F)
E + T × a shift
E + T × a shift
E + T × a ϵ reduce (F → a)
E + T × F ϵ reduce (T → T × F)
E + T ϵ reduce (E → E + T)
E ϵ accept

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 24 / 61

Day 3

Example

E → E + T
E → T
T → T × F
T → F
F → a

E

E

T

F

a

+ T

T

F

a

× F

a

stack buffer action

ϵ a+ a× a shift
a + a× a reduce (F → a)
F + a× a reduce (T → F)
T + a× a reduce (E → T)
E + a× a shift
E+ a× a shift
E + a × a reduce (F → a)
E + F × a reduce (T → F)
E + T × a shift
E + T × a shift
E + T × a ϵ reduce (F → a)
E + T × F ϵ reduce (T → T × F)
E + T ϵ reduce (E → E + T)
E ϵ accept

E → E+T → E+T×F → E+T×a → E+F×a → E+a×a → T+a×a → a+a×a

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 24 / 61

Day 3

Sources of non-determinism

(E + a,× a)

(E + F , × a) (E + a×, a)

(E + T × F , ϵ)

(E + F × T , ϵ) (E + T , ϵ)

Choice of the rule to reduce with.

Choice between shift and reduce.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 25 / 61

Day 3

Sources of non-determinism

(E + a,× a)

(E + F , × a) (E + a×, a)

(E + T × F , ϵ)

(E + F × T , ϵ) (E + T , ϵ)

Choice of the rule to reduce with.

Choice between shift and reduce.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 25 / 61

Day 3

Sources of non-determinism

(E + a,× a)

(E + F , × a) (E + a×, a)

(E + T × F , ϵ)

(E + F × T , ϵ) (E + T , ϵ)

Choice of the rule to reduce with.

Choice between shift and reduce.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 25 / 61

Day 3

A possibly efficient parsing algorithm

A deterministic shift-reduce parser can determine at each step
and in constant time, based on the content of the stack and the
content of the buffer, which action to perform.

For some CFGs, this is possible.
LR(k) grammars, for the main parts of many programming
languages.
For most CFGs, this is impossible.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 26 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw a passer-by with his telescope.
b. Wild cats and dogs chase rats.
c. The men and women from Tirol...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by [with his telescope]].
b. Wild cats and dogs chase rats.
c. The men and women from Tirol...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. Wild cats and dogs chase rats.
c. The men and women from Tirol...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. [[Wild cats] and dogs] chase rats.
c. The men and women from Tirol...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. [Wild [cats and dogs]] chase rats.
c. The men and women from Tirol...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. [Wild [cats and dogs]] chase rats.
c. [[The [men and women]] from Tirol]...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. [Wild [cats and dogs]] chase rats.
c. [The men] and [women from Tirol]...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Natural language syntax has lots of ambiguities

PP attachment, modifier scope, etc.

(1) a. Bob saw [a passer-by] [with his telescope].
b. [Wild [cats and dogs]] chase rats.
c. [[The men] and [women] from Tirol]...

→ Deterministic parsing is not available for natural languages.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 61

Day 3

Chart parsing is a possible answer to ambiguity

Idea:

decompose the analysis of the query w into the independent
analyses of all spans of w ,
the result of these subanalyses are then combined to provide
analyses of the whole w .

A data structure stores all partial analyses so that the analysis
of each span is done only once.
→ dynamic programming

Two well-known chart parsing algorithms:

CYK: bottom-up algorithm, works with CFGs in Chomsky
Normal Form.

Earley: mostly top-down, works with all CFGs.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 28 / 61

Day 3

Factoring the computation

Given a CFG G and a query w . . .

Suppose S
⋆⇒ AB.

To answer the question whether AB
⋆⇒ w ,

we may look for a k ∈ [1, n] (with n = |w |) such that:

A
⋆⇒ w1:k and B

⋆⇒ wk+1:n.

S

A

w1 . . .wk

B

wk+1 . . .wn

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 29 / 61

Day 3

Constituent chart: cells correspond to spans

5
4
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] ∼ span wi . . .wj−1.
T [2, 2]⇝ ϵ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 30 / 61

Day 3

Constituent chart: cells correspond to spans

5
4
3
2 •
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] ∼ span wi . . .wj−1.
T [2, 2]⇝ ϵ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 30 / 61

Day 3

Constituent chart: cells correspond to spans

5
4 •
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] ∼ span wi . . .wj−1.
T [3, 4]⇝ likes

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 30 / 61

Day 3

Constituent chart: cells correspond to spans

5 •
4
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] ∼ span wi . . .wj−1.
T [3, 5]⇝ likes Sam

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 30 / 61

Day 3

Constituent chart: cells correspond to spans

5 •
4
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] ∼ span wi . . .wj−1.
T [1, 5]⇝ w

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 30 / 61

Day 3

Constituent chart: information stored in the cells

CYK: Non-terminal symbols are stored in the chart.

Earley: . . .

5
4
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] = {A ∈ N | A ⋆⇒ wi :j−1}

N → sister ∈ G
Det → my ∈ G
NP → Det N ∈ G

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 31 / 61

Day 3

Constituent chart: information stored in the cells

CYK: Non-terminal symbols are stored in the chart.

Earley: . . .

5
4
3 N
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] = {A ∈ N | A ⋆⇒ wi :j−1}
N → sister ∈ G

Det → my ∈ G
NP → Det N ∈ G

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 31 / 61

Day 3

Constituent chart: information stored in the cells

CYK: Non-terminal symbols are stored in the chart.

Earley: . . .

5
4
3 N
2 Det
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] = {A ∈ N | A ⋆⇒ wi :j−1}
N → sister ∈ G
Det → my ∈ G

NP → Det N ∈ G

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 31 / 61

Day 3

Constituent chart: information stored in the cells

CYK: Non-terminal symbols are stored in the chart.

Earley: . . .

5
4
3 NP N
2 Det
1

j/i 1 2 3 4 5
w = My sister likes Sam

Convention: T [i , j] = {A ∈ N | A ⋆⇒ wi :j−1}
N → sister ∈ G
Det → my ∈ G
NP → Det N ∈ G

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 31 / 61

Day 3

Constituent chart: a complete example

S → NP VP
NP → Det N
NP → PN
VP → V NP
VP → V
Det → my | the
N → sister | moon
V → likes | knows
PN → Sam | Joan

5 S ∅ VP {PN,NP} ∅
4 S ∅ {V ,VP} ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

There can be multiple non-terminal symbols in a cell.

w ∈ Σ∗ ∈ L(G) iff S ∈ T [1, |w |+ 1]

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 32 / 61

Day 3

Decoding the constituent chart

5 S ∅ VP {PN,NP} ∅
4 S ∅ {V ,VP} ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S

NP

Det

My

N

sister

VP

V

likes

NP

PN

Sam

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 33 / 61

Day 3

Chomsky Normal Form

A grammar is said to be in Chomsky Normal Form (CNF) iff all its
rules are of one of the following forms:

(binary rule) A → BC , with A,B,C ∈ N,
(lexical rule) A → a, with a ∈ Σ and A ∈ N.

Any CFG is weakly equivalent to some CFG in CNF.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 34 / 61

Day 3

Filling the chart with a CNF grammar (I)

5
4
3
2
1

j/i 1 2 3 4 5
w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length 0 (diagonal) are never generated in a CNF:
∀i ∈ [1, n],T [i , i] = ∅.
Spans of length 1 are generated by lexical rules:
∀i ∈ [1, n],T [i , i + 1] = {A ∈ N | A → wi ∈ P}.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 35 / 61

Day 3

Filling the chart with a CNF grammar (I)

5 ∅
4 ∅
3 ∅
2 ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length 0 (diagonal) are never generated in a CNF:
∀i ∈ [1, n],T [i , i] = ∅.

Spans of length 1 are generated by lexical rules:
∀i ∈ [1, n],T [i , i + 1] = {A ∈ N | A → wi ∈ P}.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 35 / 61

Day 3

Filling the chart with a CNF grammar (I)

5 PN ∅
4 V ∅
3 N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length 0 (diagonal) are never generated in a CNF:
∀i ∈ [1, n],T [i , i] = ∅.
Spans of length 1 are generated by lexical rules:
∀i ∈ [1, n],T [i , i + 1] = {A ∈ N | A → wi ∈ P}.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 35 / 61

Day 3

Filling the chart with a CNF grammar (II)

5 PN ∅
4 V ∅
3 N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length ≥ 2 :
T [i , j] = {A ∈ N | ∃k ∈ [i + 1, j − 1],

∃B ∈ T [i , k],
∃C ∈ T [k , j],
A → BC ∈ P}

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 36 / 61

Day 3

Filling the chart with a CNF grammar (II)

5 PN ∅
4 V ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length ≥ 2 :
T [i , j] = {A ∈ N | ∃k ∈ [i + 1, j − 1],

∃B ∈ T [i , k],
∃C ∈ T [k , j],
A → BC ∈ P}

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 36 / 61

Day 3

Filling the chart with a CNF grammar (II)

5 VP PN ∅
4 V ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length ≥ 2 :
T [i , j] = {A ∈ N | ∃k ∈ [i + 1, j − 1],

∃B ∈ T [i , k],
∃C ∈ T [k , j],
A → BC ∈ P}

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 36 / 61

Day 3

Filling the chart with a CNF grammar (II)

5 S VP PN ∅
4 V ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

S → NP VP
NP → Det N
VP → V PN
Det → my
N → sister
V → likes
PN → Sam

Spans of length ≥ 2 :
T [i , j] = {A ∈ N | ∃k ∈ [i + 1, j − 1],

∃B ∈ T [i , k],
∃C ∈ T [k , j],
A → BC ∈ P}

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 36 / 61

Day 3

Filling the chart: general case

j A? C?

j − 1

...

k B?

...

i + 1

i i + 1 · · · k · · · j − 1

k = i + 1

k = j − 1

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 37 / 61

Day 3

Diagonal strategy

n+1

n

...

k

...

2

1 2 · · · k · · · n

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 38 / 61

Day 3

Line strategy

n+1

n

...

k

...

2

1 2 · · · k · · · n

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 39 / 61

Day 3

CYK: Algorithm104 CHAPTER 8. CHART PARSING

// Input: u 2 ⌃?

// Output: the constituent chart of u
Function CYK-diagonal(u)

T := empty chart(u);
// First diagonal (unary cases)
for i := 1 to |u| do

foreach (A ! ui) 2 P do
T [i, i + 1].add(A);

// Other diagonals (binary cases)
for l := 2 to |u| do // loop on the length of the span

for i := 1 to |u| + 1 � l do // loop on the beginning of the span
j := i + l; // end of the span
for k := i + 1 to j � 1 do // loop on the splitting point

foreach (A ! B C) 2 P do
if B 2 T [i, k] and C 2 T [k, j] then

T [i, j].add(A);

return T ;
Algorithm 16: CYK analyser using a diagonal strategy for filling the constituent chart.

Exercise 8.1 Write the pseudo-code of a CYK analyser that uses the line strategy for filling
the constituent chart.

Derivation trees

Remark 8.11 (Decoding the constituent chart) Algorithm 18 implements a basic de-
coding of the constituent chart: this algorithm generates a list of all possible derivation trees
of a word from its constituent chart.

Clearly, the complexity of algorithm 18 is at least the number of resulting trees (the number
of operations performed by any algorithm is at least equal to the number of resulting trees), but
one can also see that this algorithm redoes a lot of the computation that was already performed
when building the constituent chart.

Remark 8.12 (Simplification) One way to simplify the previous algorithm relies on using
a second structure T 0 alongside the constituent chart T . While the constituent chart T records,
for each span, all possible non-terminals that can generate this span, this second structure T 0

further records, for each span (wi:j�1) of length at least 2 and each non-terminals (A) that can
generate this span, which are its possible subspans (wi:k�1 and wk:j�1) with their corresponding
non-terminals (B and C).

This additional structure can be filled by extending algorithm 16 with a
‘T 0[i, j, A].add((B, k, C))’ instruction to be executed within the body of the conditional,
next to the ‘T [i, j].add(A)’ instruction. This modification does not impact the complexity of
the algorithm. Once T and T 0 have been filled, algorithm 19 can be used to enumerates all
possible derivation trees of the input word.

The runtime of algorithm 19 is in practice better than the one of algorithm 18, but it is
still not optimal as several recursive calls to CYK-trees might be executed with the exact same
arguments, resulting in a duplication of computation.

20
23

/0
7/

05
Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 40 / 61

Day 3

CYK Summary

Time complexity: O(n3)

Additional information can be stored for decoding the chart
into trees.

Efficient algorithm but requires transformation into CNF.

Can be adapted for CCG, TAG, probabilistic CFG...

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 41 / 61

Day 3

Earley Algorithm

Works with any CFG (no transformation required).

For CYK, it was possible to store non-terminals in the chart
(A ∈ T [i , j] iff A

⋆⇒ wi :j−1).

For Earley parsing, the chart will contain dotted rules:
(A → α • β) ∈ T [i , j] iff α

⋆⇒ wi :j−1.

Successful analysis: ∃α, (S → α •) ∈ T [1, |w |+ 1].

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 42 / 61

Day 3

Earley items

The information that (A → α • β) ∈ T [i , j]

is an (Earley) item
and is written “(A → α • β, i , j)”.

Graphical representation:

i · · · j

ui−1 ui uj−1 uj

A → α • β

Interpretation:

one is trying to recognise A starting from ui ;
so far, one has recognised α up to uj−1 (included).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 43 / 61

Day 3

Another view on the CYK chart

1 My 2 sister 3 likes 4 Sam 5

Det → my N → sister

VP → V
V → likes

NP → PN
PN → Sam

NP → DetN VP → VNP

S → NPVP

5 S ∅ VP {PN,NP} ∅
4 S ∅ {V ,VP} ∅
3 NP N ∅
2 Det ∅
1 ∅
j/i 1 2 3 4 5

w = My sister likes Sam

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 44 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4

B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •

A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Use of dotted rules

The use of dotted rules makes it relatively easy to generalise
the idea behind CYK to non-binary rules.

Example:

i · · · k1 · · · k2 · · · k3 · · ·

A → •B1 B2 B3 B4 B1 → α1 •
A → B1 • B2 B3 B4

B2 → α2 •

A → B1 B2 • B3 B4

B3 → α3 •

A → B1 B2 B3 • B4

An Earley item can be interpreted as an hypothesis:
(A → α • β, i , j) indicates that one is trying to recognise A
starting from i .

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 45 / 61

Day 3

Vocabulary

Inactive item: (A → α •, i , j).
Active item: item that is not inactive.

Initial item: (A → •α, i , j).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 46 / 61

Day 3

Fundamental operation

comp (“complete”)

Input: (A → α1 • B α2, i , j) and (B → β •, j , k)
Output: (A → α1 B • α2, i , k)

i j k

A → α1 • B α2 B → β •

A → α1 B • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 47 / 61

Day 3

Fundamental operation

comp (“complete”)

Input: (A → α1 • B α2, i , j) and (B → β •, j , k)

Output: (A → α1 B • α2, i , k)

i j k

A → α1 • B α2 B → β •

A → α1 B • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 47 / 61

Day 3

Fundamental operation

comp (“complete”)

Input: (A → α1 • B α2, i , j) and (B → β •, j , k)
Output: (A → α1 B • α2, i , k)

i j k

A → α1 • B α2 B → β •

A → α1 B • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 47 / 61

Day 3

Fundamental operation

comp (“complete”)

Input: (A → α1 • B α2, i , j) and (B → β •, j , k)
Output: (A → α1 B • α2, i , k)

i j k

A → α1 • B α2 B → β •

A → α1 B • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 47 / 61

Day 3

Fundamental operation

comp (“complete”)

Input: (A → α1 • B α2, i , j) and (B → β •, j , k)
Output: (A → α1 B • α2, i , k)

i j k

A → α1 • B α2 B → β •

A → α1 B • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 47 / 61

Day 3

Another view on comp

Université Paris Diderot – ME03LI – 15/16 Ch3. Parsing tabulaire

3.3.2 Règle fondamentale

Idée de base de la règle fondamentale : si une règle active se trouve couvrir la zone (i, j),
et que derrière le point se trouve un non-terminal (B) qui couvre (complètement) la zone
(j, k), alors il est possible de faire avancer le point d’un côté à l’autre du non-terminal dans
la règle active initiale. Voir figure 3.10.

input (1) input (2) output

j

A

i

Bα

α

α1 2

3

j

A

Bα

α

k

α1 2

3 3

A

i

Bα

α

k

α1 2

Figure 3.10 – Illustration sur les arbres de la règle comp

On peut remarquer que pour déclencher la règle comp il faut à la fois des règles inactives et
des règles actives. On peut voir sur la figure 3.11 les points communs et les différences avec
CYK. La définition formelle de la règle est donnée page suivante, on peut aussi utiliser les
DAG pour représenter de façon concise les règles à la Earley (cf. figure 3.12).

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

i

i j

k

k

j

A → α1B • α2

A → α1 • Bα2

B → α3•

Figure 3.11 – Illustration de la règle comp sur la table des sous-chaînes

11

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 48 / 61

Day 3

Other essential operation

scan

Input: (A → α1 • aα2, i , j) provided that uj = a

Output: (A → α1 a • α2, i , j + 1)

i j j + 1

A → α1 • aα2

uj = a

A → α1 a • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 49 / 61

Day 3

Other essential operation

scan

Input: (A → α1 • aα2, i , j) provided that uj = a

Output: (A → α1 a • α2, i , j + 1)

i j j + 1

A → α1 • aα2

uj = a

A → α1 a • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 49 / 61

Day 3

Other essential operation

scan

Input: (A → α1 • aα2, i , j) provided that uj = a

Output: (A → α1 a • α2, i , j + 1)

i j j + 1

A → α1 • aα2

uj = a

A → α1 a • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 49 / 61

Day 3

Other essential operation

scan

Input: (A → α1 • aα2, i , j) provided that uj = a

Output: (A → α1 a • α2, i , j + 1)

i j j + 1

A → α1 • aα2

uj = a

A → α1 a • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 49 / 61

Day 3

Other essential operation

scan

Input: (A → α1 • aα2, i , j) provided that uj = a

Output: (A → α1 a • α2, i , j + 1)

i j j + 1

A → α1 • aα2

uj = a

A → α1 a • α2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 49 / 61

Day 3

comp and scan “advance” existing items.

How/when are initial items introduced?

→ Several versions (i.e. strategies) of the algorithm.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 50 / 61

Day 3

comp and scan “advance” existing items.

How/when are initial items introduced?

→ Several versions (i.e. strategies) of the algorithm.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 50 / 61

Day 3

comp and scan “advance” existing items.

How/when are initial items introduced?

→ Several versions (i.e. strategies) of the algorithm.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 50 / 61

Day 3

First strategy

The chart is initialised with all possible initial items (i.e.
(A → •α, i , i)).
→ bottom-up parsing (not unlike CYK).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 51 / 61

Day 3

First strategy

Algorithm 1: Simple Earley analysis

Function earley-simple(u)
// Initialisation

T := empty chart(u);
for j := 1 to |u|+ 1 do

T [j] := ordered set();
foreach (A → α) ∈ P do T [j].add((A → •α, j));

// Main loop

for j := 1 to |u|+ 1 do
k := 0;
while k < len(T [j]) do

(A → α • β, i) := T [j][k];
if β = ϵ then // comp?

k ′ := 0;
while k ′ < len(T [i]) do

(A′ → α′ • β′, i ′) := T [i][k ′];
if β′

1 = A then
T [j].add((A′ → α′ β′

1 • β′
2:|β′|, i

′));

k ′ += 1;

else if j < |u|+ 1 then // scan?
if β1 = uj then
T [j + 1].add((A → αβ1 • β2:|β|, i)) ;

k += 1;

return T ;

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 52 / 61

Day 3

First strategy

Let’s analyse Sabine saw a truck with a grammar such that

P =



S → NPVP,
NP → DETN | PN,
VP → V | VNP,
DET → the | a(n),
N → truck | experiment,
PN → Sabine | Fred | Jamy ,
V → saw | prepared


.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 53 / 61

Day 3

First strategy

1 · · · (PN → •Sabine, 1), (NP → •PN, 1), (S → •NPVP, 1) · · ·
Sabine

2 · · · (V → • saw, 2), (VP → •V, 2), (VP → •VNP, 2) · · ·
saw (PN → Sabine •, 1), (NP → PN •, 1), (S → NP • VP, 1)

3 · · · (DET → • a, 3), (NP → •DETN, 3) · · · (V → saw •, 2),
a (VP → V •, 2), (VP → V • NP, 2), (S → NPVP •, 1)

4 · · · (N → • truck, 4) · · · (DET → a •, 3), (NP → DET • N, 3)
truck

5 · · · (N → truck •, 4), (NP → DETN •, 3), (VP → VNP •, 2),
(S → NPVP •, 1)

Table: Chart built during the analysis of Sabine saw a truck. Items
introduced during the initialisation are shown in black (only the useful
ones are shown). Items introduced by scan are shown in green. Items
introduced by comp are shown in blue.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 54 / 61

Day 3

Better version

The original Earley algorithm.

The only items introduced initially are the ones of the shape
(S → •α, 1, 1).
A new operation, pred (predict), is used to introduce
additional initial items.

pred is used to introduce an initial item only if this item may
be used to advance an item already introduced.

→ bottom-up parsing with top-down information.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 55 / 61

Day 3

Better version

New operation: pred

Input: (A → α1 • B α2, i , j) where B ∈ N

Output: (B → • γ, j , j) for all (B → γ) ∈ P

i j

A → α1 • B α2

B → • γ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 56 / 61

Day 3

Better version

New operation: pred

Input: (A → α1 • B α2, i , j) where B ∈ N

Output: (B → • γ, j , j) for all (B → γ) ∈ P

i j

A → α1 • B α2

B → • γ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 56 / 61

Day 3

Better version

New operation: pred

Input: (A → α1 • B α2, i , j) where B ∈ N

Output: (B → • γ, j , j) for all (B → γ) ∈ P

i j

A → α1 • B α2

B → • γ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 56 / 61

Day 3

Better version

New operation: pred

Input: (A → α1 • B α2, i , j) where B ∈ N

Output: (B → • γ, j , j) for all (B → γ) ∈ P

i j

A → α1 • B α2

B → • γ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 56 / 61

Day 3

Better version

New operation: pred

Input: (A → α1 • B α2, i , j) where B ∈ N

Output: (B → • γ, j , j) for all (B → γ) ∈ P

i j

A → α1 • B α2

B → • γ

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 56 / 61

Day 3

Better version

Algorithm 2: Earley analysis

Function earley(u)
// Initialisation

T := empty chart(u);
for j := 1 to |u|+ 1 do T [j] := ordered set();
foreach (S → α) ∈ P do T [1].add((S → •α, 1));
// Main loop

for j := 1 to |u|+ 1 do
k := 0;
while k < len(T [j]) do

(A → α • β, i) :=∈ T [j][k];
if β = ϵ then // comp?

k ′ := 0;
while k ′ < len(T [i]) do

(A′ → α′ • β′, i ′) := T [i][k ′];
if β′

1 = A then
T [j].add((A′ → α′ β′

1 • β′
2:|β′|, i

′));

k ′ += 1;

else if β1 ∈ N then // pred?
foreach (β1 → γ) ∈ P do
T [j].add((β1 → • γ, j));

else if j < |u|+ 1 then // scan?
if β1 = uj then
T [j + 1].add((A → αβ1 • β2:|β|, i)) ;

k += 1;

return T ;

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 57 / 61

Day 3

Better version

Let’s analyse Sabine saw a truck with a grammar such that

P =



S → NPVP,
NP → DETN | PN,
VP → V | VNP,
DET → the | a(n),
N → truck | experiment,
PN → Sabine | Fred | Jamy ,
V → saw | prepared


.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 58 / 61

Day 3

Better version

1 (S → •NPVP, 1), (NP → •PN, 1)· · · (PN → •Sabine, 1)· · ·
Sabine

2 (PN → Sabine •, 1), (NP → PN •, 1), (S → NP • VP, 1),
saw (VP → •V, 2), (VP → •VNP, 2), (V → • saw, 2)· · ·

3 (V → saw •, 2), (VP → V •, 2), (VP → V • NP, 2),
a (S → NPVP •, 1), (NP → •DETN, 3)· · · (DET → • a, 3)· · ·

4 (DET → a •, 3), (NP → DET • N, 3), (N → • truck, 4)· · ·
truck

5 (N → truck •, 4), (NP → DETN •, 3), (VP → VNP •, 2)
(S → NPVP •, 1)

Table: Chart built during the analysis of Sabine saw a truck. Items
introduced during the initialisation are shown in black. Items introduced
by scan are shown in green. Items introduced by comp are shown in blue.
Items introduced by pred are shown in red (only the useful ones are
shown).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 59 / 61

Day 3

For both versions, the worst-case time complexity is O(n3)
(where n is the length of the query).

Concerning the version with pred:

The worst-case time complexity is lowered to O(n2) for
unambiguous grammars.
In practice (for usual grammars and inputs), the observed
run-time is often better than O(n3).

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 60 / 61

Day 3

Day 3: Summary

Top-down parsing: rewrite the axiom into the query.

Bottom-up parsing: “unwrite” the query into the axiom.

Shift-Reduce is a bottom-up transition system.

Some (formal) languages have grammars that can be parsed
deterministically.

This is not possible with intrinsically ambiguous languages,
such as natural languages.

Chart-parsing methods (e.g. CYK, Earley) have O(n3)
worst-case time complexity, even with ambiguous grammars.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 61 / 61

	Day 3

