
Day 1

Natural language syntax: parsing and complexity

Timothée Bernard and Pascal Amsili

Université Paris Cité, Université Sorbonne Nouvelle
timothee.bernard@u-paris.fr, pascal.amsili@ens.fr

Ljubljana, Slovenia – August 7-11, 2023
ESSLLI foundational course in Language and Computation

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 1 / 29

Day 1

Overview of the course

Day 1: Formal languages and syntactic complexity.

Day 2: The complexity of natural language.

Day 3: Historic algorithms for parsing.

Day 4: Modern approaches to parsing.

Day 5: Neural networks and error propagation.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 2 / 29

Day 1

Day 1

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 3 / 29

Day 1

Today’s contents

Formal languages.

Automata.

Formal grammars.

The recognition and the parsing problems.

The Chomsky-Schützenberger hierarchy.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 4 / 29

Day 1

Languages are sets of words (finite sequences of symbols)

Alphabet (Σ): finite set of symbols called letters.

(1) Examples:

a. {0, 1}
b. {a, b, c , · · · , z}

(Finite) Word (w): finite sequence of letters.

(2) Examples:

a. 000110101
b. bonjour
c. ϵ (the empty word)

(Formal) Language: set of words.
(examples soon)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 5 / 29

Day 1

A letter is anything considered atomic

“letter” ≡ “atomic”

w = Hello world! can be seen as a word on
Σ = {Hello,world , !}.
Length: |w | = 3

Indices: w1 = Hello, w2 = world , w3 = !

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 6 / 29

Day 1

Languages can be simple or weird

The set L1 of Arabic numerals, on Σ = {0, 1, . . . , 9}.
0, 291, 9999 ∈ L1; 00003 /∈ L1
(L1 = {w ∈ Σ+ | w1 ̸= 0 ∨ |w | = 1})
The set L2 of Roman numerals, on Σ = {I ,V ,X , L,C ,D,M}.
I ,MMXXIII ,VIII ∈ L2; IIX /∈ L2

The set L3 of first-order logic formulas, on
Σ = {∧,¬, (,), p, q, r , s, . . . }.
p, (¬p), (q ∧ r) ∈ L3; p¬ /∈ L3

The set of valid zip files, on Σ = {0, 1}.
The set of Python programs, on the set of characters allowed to

write them.

The set of theorems of ZFC (set theory), on the set of

characters allowed to write them.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 7 / 29

Day 1

Languages can be very simple or very weird

Given some Σ. . .

The empty language ∅ (no word is in ∅).
The full language Σ⋆ (any word on Σ is in Σ⋆).

Some “random” language L obtained by going through all
w ∈ Σ⋆, tossing a fair coin and including w in L in case of a
head.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 8 / 29

Day 1

Natural languages can be seen as formal languages

Let Σ be the set of English words (+ punctuation and digits).

(English words are here considered to be atomic.)

Let L be the grammatical sentences of English seen as
sequences of symbols in Σ.

(This definition requires binary grammaticality judgments for
all sequences; → Day 2.)

L ⊆ Σ⋆, is a formal language.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 9 / 29

Day 1

The recognition problem: computing grammaticality

Given Σ and L ⊆ Σ⋆. . .

The recognition problem for L:

Given some w ∈ Σ⋆, is w in L?

Very easy if L is finite.

Easy for the set of Arabic numerals, slightly more complex for
Roman numerals.

A bit harder for the set of programs in Python.

Quite hard for the set of theorems of ZFC.

Impossible (except if you’re very lucky) for a random language.

What about a natural language such as English? → Day 2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 10 / 29

Day 1

There is not just one notion of complexity

Worst-case time complexity of an algorithm: Given an input
of size n, how many basic steps are required to run the
algorithm?

Worst-case space complexity of an algorithm: Given an input
of size n, how much memory is required to run the algorithm?

. . .

These notions usually assume the Turing machine as model of
computation.

The recognition problem is traditionally studied using another
notion of complexity, based on multiple models of
computation; what type of memory is used?

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 11 / 29

Day 1

A DFA has a finite fixed amount of memory

Deterministic Finite-state Automaton (DFA):
(Σ,Q, q0,F , δ) where

Σ is an alphabet;
Q is a finite set (of states);
q0 ∈ Q (the initial state);
F ⊆ Q (final states);
δ is a function Q × Σ → Q (the transition function).

Memory: Nothing beyond the states themselves.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 12 / 29

Day 1

A DFA encodes a formal language

q0start

q1

q2

a

b
a

b

ab q0start

q1

q2

q3

0 . 0, 1, . . . , 9

0, 1, . . . , 9

A word w is accepted if reading w leads from the initial state
to a final state.

For a DFA A, L(A) is the set of words that A accepts.

Here?

Not all languages are encoded (recognised) by a DFA;
ex: {anbn | n ∈ N} (proof in Day 2)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 13 / 29

Day 1

Memory is (computational) power

Other automata models have, in addition, a memory structure
that is used in transitions.

There is also a notion of (non-)determinism, but let’s ignore this.

The models in the next slide have increasing computational
power.

Computational power: the ability to solve problems.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 14 / 29

Day 1

Stacks and tapes of memory increase computational power

Pushdown automaton: an unboundedi stacka of memory;

a) only the top cell can be read/overwritten/cleared, a new can
can be added on top, the stack is initially empty and the input word is still written on

a dedicated buffer,

i) no limit to the number of cells;

Linear bounded automaton: a linearly boundedii tapeb of
memory;

b) a movable “head” points to a cell, only this cell can be
read/written, the input word is initially written on the tape rather than on a dedicated

buffer,

ii) the maximum number of cells is given by a linear function of
the length of the input word;

Turing machine: an unboundedi tapeb of memory.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 15 / 29

Day 1

The Chomsky-Schützenberger hierarchy

Type 3 Finite automata
(Regular grammars)

Type 2 Pushdown automata
(Context-free grammars)

Type 1 Linear bounded automata
(Context-sensitive grammars)

Type 0 Turing machines
(Unrestricted grammars)

4+1 complexity classes of languages are represented here.

“+1” because some languages are beyond type 0.

Non-deterministic versions of the models. (→ matters for types 1 and 2)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 16 / 29

Day 1

Grammars are finite sets of rewriting rules

Unrestricted grammar: (N,Σ,P,S) where

N is a finite set (of non-terminal symbols);
Σ is an alphabet;
P ⊆ (N ∪ Σ)+ × (N ∪ Σ)⋆ is a finite set (of production
rules);
S ∈ N (the axiom);

and N ∩ Σ = ∅.
Production rules are rewriting rules; (α, β) is noted “α → β”.

Using bX → Xab, abXc can be rewritten as aXabc;
this fact is noted “abXc ⇒

bX→Xab
aXabc”.

In α → β, α is the left-hand side and β the right-hand side.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 17 / 29

Day 1

Grammars generate languages

w ∈ Σ⋆ is generated by a grammar if there is a derivation
S ⇒ . . . ⇒ w .

Like automata, grammars encode (generate) languages.

Example with G = ({S}, {a, b}, {S → ϵ,S → aSb},S):
derivations:

S ⇒ ϵ

S ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb
. . .

L(G) = {anbn | n ∈ N}
Rmk: Two distinct grammars can generate the same language.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 18 / 29

Day 1

Rewriting is (expressive) power

Other grammatical formalisms restrict the form of production
rules.

The formalisms in the next slide have decreasing expressive
power.

These formalisms match the previous models of automata.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 19 / 29

Day 1

Rewriting is (expressive) power

Context-sensitive grammar (CSG): [intuition by examples]
ex: abXc → abYzZc

Context-free grammar (CFG): the left-hand side of a rule is
a single non-terminal symbol.
ex: X → YzZ

Regular grammar (RG): in addition, the right-hand side of a
rule is either empty (ϵ), a single non-terminal symbol, or a
non-terminal followed by a terminal symbol.
ex: X → ϵ, X → a, X → aY

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 20 / 29

Day 1

The Chomsky-Schützenberger hierarchy

Type 3 Finite automata/
Regular grammars

Type 2 Pushdown automata/
Context-free grammars

Type 1 Linear bounded automata/
Context-sensitive grammars

Type 0 Turing machines/
Unrestricted grammar

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 21 / 29

Day 1

R, CF and CS derivations are constituent trees

G = ({S}, {a, b}, {S → ϵ, S → a S b},S) is a CFG.

L(G) = {anbn | n ∈ N}
S

ϵ

S

bS

ϵ

a

S

bS

bS

ϵ

a

a

. . . S

bS

b. . .

bS

ϵ

a

a

a

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 22 / 29

Day 1

Ambiguity is when a word has two structures

A grammar G is ambiguous iff ∃w ∈ L(G) s.t. w has two
distinct syntactic structures (according to G).

G = ({S}, {0, 1, · · · , 9,+,−}, {S → 0|1| · · · |9|S+S |S×S},S)
w = 2 + 3× 4:

S

S

S

4

×S

3

+S

2

S

S

4

×S

S

3

+S

2

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 23 / 29

Day 1

The parsing problem: finding derivations

Given a grammar G on some alphabet Σ. . .

The parsing problem for G :

Given some w ∈ Σ⋆,
what are the derivations (if any) of w in G?

(Solving the parsing problem for G entails solving the
recognition problem for L(G).)

Practical solutions to the parsing problem: Days 3-4.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 24 / 29

Day 1

Syntactic complexity vs semantic expressivity

Context-free grammars are commonly used to describe the
syntax of many logical languages (e.g. PL, FOL), some
programming languages, and parts of NL (→ Day 2).

Untyped λ-calculus: CF syntax, Turing-complete semantics.
“How is this possible?”

→ The syntactic complexity and the semantic expressivity of
interpreted languages are two distinct notions.

Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is {0, 1}⋆, a regular language,

compositionally interpreted as a Turing-complete language.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 25 / 29

https://en.wikipedia.org/wiki/Iota_and_Jot

Day 1

The recognition/parsing problems are very general

Consider any binary (“yes/no”) problem P and see it as the
set of inputs for which the answer is positive.

Let str be a linearisation function for the possible inputs of P,
and L = {str(in) | in ∈ P}.
Solving P is equivalent to the recognition problem for L.

More generally, any computable function f can be encoded as
a grammar s.t. after parsing the input w , the output f (w)
can be read off the derivation.

→ One can compute “syntactically”: a grammar is a
program. (The parser is the machine that runs it.)

The formalism of unrestricted grammars is a Turing-complete
programming language. (syntactically regular?)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 26 / 29

Day 1

Exercise: Checking addition as CF parsing/recognition

Unary notation of natural integers:

“” for 0;
“i” for 1;
“ii” for 2;
“iii” for 3;
. . .

Exercise: Write a CFG G on Σ = {i ,+,=} that generates
exactly the strings “a+ b = c” for all natural numbers a, b
and c written in unary notation and s.t. a+ b = c .

With G , a CF parser can solve this arithmetic problem.

In other words, some non-deterministic pushdown automaton
can solve this problem. (in fact, a deterministic one can)

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 27 / 29

Day 1

Exercise: Boolean satisfiability as CF parsing/recognition

Consider the set of propositional logic formulas built from (at
most) n propositional letters p1, p2, . . . , pn.
Ex: (p1 ∧ (¬p2)), (¬(¬(p2 ∧ p5))), (p4 ∧ (¬p4))
Problem: Which of these formulas are satisfiable?
Ex: (p1 ∧ (¬p2)) and (¬(¬(p2 ∧ p5))) but not (p4 ∧ (¬p4))
Exercise: Write a CFG G on Σ = {∧,¬, (,), p1, p2, · · · , pn}
that generates exactly L, the set of satisfiable formular.

With G , a CF parser can solve this satisfiability problem.

In other words, some non-deterministic pushdown automaton
can solve this problem.

Hint: First consider an arbitrary interpretation function

{p1, p2, · · · , pn} → {0, 1}, then generalise.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 28 / 29

Day 1

Day 1: Summary

Languages are sets of words (finite sequences of symbols).

Automata are finite state machines with or without additional
memory.

Grammars are finite sets of rewriting rules.

The parsing problem for a grammar consists in finding
derivations.

All solvable problems can be expressed as parsing problems.

The Chomsky-Schützenberger hierarchy is a hierarchy of
classes of languages, of models of automata, and of
grammatical formalisms.

For interpreted languages, syntactic complexity is not
semantic expressivity.

Timothée Bernard and Pascal Amsili NL syntax: parsing and complexity August 2023 29 / 29

	Day 1

