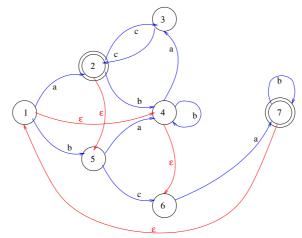
4.1 Théorème de Kleene

1 Soient les deux automates décrits par les tables de transition suivantes :

	a	b	\mathbf{c}
$\rightarrow 1$	1	1	2
2	3	1	2
3	3	4	3
$\leftarrow 4$	3	4	3

Donner un automate reconnaissant tous les mots reconnus à la fois par les deux automates.

 $\boxed{2}$ Soit l'automate suivant. Proposer un automate sans ε -transitions (mais pas nécessairement déterministe) qui reconnaît le même langage.



- 3 Appliquer l'algorithme de suppression des ε -transitions à l'automate obtenu par la méthode systématique pour le langage $(a|c)(b|\varepsilon)d^*$

Donner l'expression rationnelle correspondante.

5 Soit l'automate suivant :

	a	b	с	ε
$\rightarrow 1$	1,2	3	5	5
2	3	2	1	
← 3			5	4,6
4	3		6	2
5	5	4,6	6	
← 6				

- 1. Proposer une grammaire régulière qui engendre le même langage.
- 2. Proposer un automate sans ε -transition qui reconnaît le même langage.
- 6 Soit l'expression rationnelle $(aa|b)^*(ca^*|ba^*b)$.
 - 1. Proposer un automate qui reconnaît le langage décrit par cette expression.

- 2. À partir de l'automate, proposer une grammaire régulière engendrant le même langage.
- 3. Donner un arbre syntaxique avec la grammaire précédente pour le mot aabaab.

7 Soit la grammaire presque régulière suivante.

$$\begin{array}{c|cccc} S \rightarrow aS & | & aB & | & \varepsilon \\ A \rightarrow cS & | & bB & \\ B \rightarrow aA & | & bB & | & A \\ C \rightarrow cD & | & A \\ D \rightarrow cC & | & \varepsilon & \end{array}$$

- 1. Proposer un automate qui reconnaît le même langage.
- 2. En procédant éventuellement par étapes, proposer un automate **déterministe** le plus simple possible qui reconnaisse le même langage.
- 3. En déduire une version simplifiée de la grammaire initiale.

8 On s'autorise quelquefois à écrire dans la partie droite des règles d'une grammaire algébrique une expression rationnelle : par exemple, on pourrait imaginer dans une grammaire de la langue naturelle une règle de la forme $NP \to Det \ A^* \ N \ (A|Rel)^*$.

Est-ce légitime? Peut-on proposer une (sous-)grammaire qui reconnaisse le même langage que la règle ci-dessus?

9 Soit la grammaire donnée par les règles suivantes :

$$\begin{array}{ccc} S & \rightarrow & aA \mid bB \\ B & \rightarrow & aA \mid bC \mid b \\ A & \rightarrow & bB \mid aC \mid a \\ C & \rightarrow & aC \mid a \mid b \mid bC \end{array}$$

- 1. Construire l'automate à états fini associé à cette grammaire.
- 2. Donner les états successifs permettant de reconnaître les trois chaînes aaa, babba et babaaaa.
- 3. Cet automate est-il déterministe ? Si non, écrire l'automate à états fini déterministe correspondant.

10 Soit l'automate généralisé représenté dans le tableau suivant. Donnez l'expression rationnelle que l'on obtient en supprimant en premier l'état 1, puis l'état 2; et donnez celle que l'on obtient en supprimant en premier l'état 2. Qu'en déduisez-vous?

$$\begin{array}{c|cccc} \nearrow & 1 & 2 & F \\ \hline I & a|b & \varepsilon & \emptyset \\ 1 & a & \emptyset & \varepsilon \\ 2 & c^* & b & \emptyset \\ \end{array}$$

11 Transformer la grammaire suivante en la débarrassant des symboles non terminaux inutiles (i.e. sans contribution) : $S \longrightarrow A \mid B$

$$A \longrightarrow aB \mid bS \mid b$$

$$B \longrightarrow AB \mid Ba$$

$$C \longrightarrow AS \mid b$$