
Sémantique lexicale computationnelle
Traitement sémantique automatique des langues naturelles

Pascal Denis
INRIA

pascal.denis@inria.fr

(Slides réalisés à partir du cours de Dan Jurafsky au LSA 2008 et de celui de
Katrin Erk à UT Austin 2007)

Master en Linguistique Informatique
Université Paris 7

Année 2009-2010

mailto:pascal.denis@inria.fr
mailto:pascal.denis@inria.fr

Outline

‣ Introduction

‣ Lexical semantics basics

‣ Online resources: WordNet

‣ Computational lexical semantics

‣ Word Sense Disambiguation (WSD)

‣ Semantic Role Labeling (SRL)

‣ Word similarity

‣ Lexical Acquisition

Introduction

Introduction

‣ So far, we’ve learned to compute and interpret
semantic representations
‣ A man bought a donkey.

‣

‣ Nice, but we still don’t have a full understanding of
this sentence

‣ what man’, donkey’, and buy’ actually mean?

‣ no treatment of lexical ambiguity: e.g., John went to the
bank

‣ no way to draw inferences: A man bought an animal, A
man now owns a donkey, ...

∃x, y, t [man′(x) ∧ donkey′(y) ∧ buy′(x, y, t) ∧ t < now]

Three Perspectives on Meaning

‣ Lexical Semantics

‣ The meanings of individual words

‣ Compositional Semantics

‣ How those meanings combine to make meanings for
individual sentences/clauses or utterances

‣ Discourse Semantics/Pragmatics

‣ How sentence/clause meanings combine with each other
and with other facts about various kinds of context to make
meanings for a text or discourse

‣ Dialog or Conversation is often lumped together with
Discourse

Lexical Semantics Basics

Outline

‣ What’s a word (for lexical semantics)?

‣ How to represent word meaning?

‣ Lexical ambiguity
‣ homonymy

‣ polysemy

‣ Lexical relations

‣ Synonymy vs. Antonymy

‣ Hypernomy vs. Hyponomy

‣ Meronomy vs. Holonymy

What’s a word?

‣ What a word is varies according to uses: tokens, stems,
lemmas,...

‣ For lexical semantics, the unit we want is the lemma

‣ Singular form for nouns: carpet is the lemma for carpets

‣ Infinitive form for verbs: faire is the lemma for feras

‣ Lemmatization is the process of mapping a word form to a
lemma (not always deterministic: e.g. found)

‣ Lexeme: An abstract pairing of a lemma with a single
meaning representation

‣ Lexicon: A collection of lexemes

How to represent word meaning?

‣ In theoretical linguistics:

‣ Definitional: necessary and sufficient conditions

‣ bird(x) iff animal(x) & has-wings(x) & ...

‣ Semantic primitives

‣ hen: +chicken, +adult, +female

‣ KILL(x,y) <=> CAUSE(x,BECOME(NOT(ALIVE(y)))

‣ In computational linguistics:

‣ Relational: semantic network (e.g., Wordnet)

‣ words in relation to other words (IS-A, HAS-A, ...)

‣ Associative/Distributional

‣ similar meanings <=> similar contexts

Lexical ambiguity

‣ Some lemmas have multiple different meanings:

‣ “Instead, a bank can hold the investments in a custodial
account in the client’s name”

‣ “But as agriculture burgeons on the east bank, the river will
shrink even more”

‣ Thus, bank here has two senses:

‣ bank1: financial institution

‣ bank2: slop along river

‣ Most non-rare words have different meanings

‣ The task of mapping a word to its correct sense is called
Word Sense Disambiguation (or WSD)

Types of lexical ambiguities

‣ Homonymy

‣ Accidental: coincidence that the same lemma has those
different senses, no relation between senses (doesn’t hold
across languages)

‣ Examples: bank, pitcher, ...

‣ Homonymy vs. homography vs. homophony

‣ Polysemy

‣ Systematic: the relation between the senses occurs with
other words (tends to hold across languages)

‣ Examples: bank, chicken, plum, ...

‣ Typical relations: BUILDING-ORGANIZATION, ANIMAL-MEAT,
TREE-FRUIT

Homonymes:
glace -> ice cream/mirror
batterie -> drums/battery
mousse, tour -> masc/fem

Homographes: un as, tu as

Homophones:
maitre/metre/mettre
paire, pere; mere/mer/maire
Sot, saut, sceau et seau
vers, ver, verre, vert et vair
mer, mère et maire

Lexical ambiguity test

‣ Consider examples of the word serve:

‣ Which flights serve breakfast?

‣ Does America West serve Philadelphia?

‣ The zeugma/copredication test:

‣ ?Does United serve breakfast and San Jose?

‣ This test works better for homonymy than polysemy:

‣ John works for the bank across the street.

Synonyms

‣ Words have the same meaning in some or all contexts:
‣ big / large

‣ automobile / car

‣ vomit / throw up

‣ water / H20

‣ Two lexemes are synonyms if they can be successfully
substituted for each other in all situations
‣ If so they have the same propositional meaning

‣ Few or no examples of perfect synonymy:
‣ Why should there be?

‣ Sensitivity to register, genre, ...

Relation between senses rather than words

‣ Consider the words big and large

‣ Are they synonyms?

‣ How big is that plane?

‣ Would I be flying on a large or small plane?

‣ How about here:

‣ Miss Nelson, for instance, became a kind of big sister to
Benjamin.

‣ ?Miss Nelson, for instance, became a kind of large sister to
Benjamin.

‣ Why?

‣ big has a sense that means being older, or grown up

Antonyms

‣ Senses that are opposites with respect to one feature of
their meaning

‣ Otherwise, they are very similar!

‣ dark / light

‣ short / long

‣ hot / cold

‣ up / down

‣ in / out

‣ More formally: antonyms define a binary opposition
(pretty/ugly) or at opposite ends of a scale (long/short,
fast/slow) or “reversives” (rise/fall, up/down)

Hyponymy

‣ One sense is a hyponym of another if the first sense is
more specific, denoting a subclass of the other

‣ car is a hyponym of vehicle

‣ dog is a hyponym of animal

‣ mango is a hyponym of fruit

‣ Conversely

‣ vehicle is a hypernym/superordinate of car

‣ animal is a hypernym of dog

‣ fruit is a hypernym of mango

Hypernymy more formally

‣ Extensional:
‣ The class denoted by the superordinate

‣ extensionally includes the class denoted by the hyponym

‣ Entailment:
‣ A sense A is a hyponym of sense B if being an A entails being a B

‣ Hyponymy is usually transitive
‣ A hypo B and B hypo C entails A hypo C

Other lexical relations

‣ Meronymy-holonymy: senses are in a part-whole
relationship

‣ wheel is a meronym of car

‣ car is a holonym of wheel

‣ ...

Wordnet

What is Wordnet?
‣ Hierarchical lexical database for English

‣ Developed by lexicographers and psycholinguists at Princeton since
1985 (hugely expensive): http://wordnet.princeton.edu

‣ Basic unit: synset (i.e., list of near-synonyms).

‣ Each entry contains synset, definition, examples, and links to related
synsets.

‣ WN encodes lexical relations: syno-/antonymy, hyper-/hyponymy,
mero-/holonymy, etc.

‣ Wordnets being for other languages (Czech, German, French, . . .),
both within and outside the EuroWordnet project (e.g., WOLF).

‣ WN is heavily used for tasks related to Computational Semantics.

http://wordnet.princeton.edu
http://wordnet.princeton.edu

WordNet’s coverage

Category Unique Forms

Noun 117,097

Verb 11,488

Adjective 22,141

Adverb 4,601

Format of Wordnet Entries

WordNet Noun Relations

WordNet Verb Relations

WordNet Hierarchies

How is “sense” defined in WordNet?

‣ The set of near-synonyms for a WordNet sense is called
a synset (synonym set); it’s their version of a sense or a
concept

‣ Example: chump as a noun to mean

‣ ‘a person who is gullible and easy to take advantage of’

‣ Each of these senses share this same gloss

‣ Thus for WordNet, the meaning of this sense of chump
is this list.

Wordnet: hyponyms

27

Wordnet: hypernyms

28

Wordnet: other relations

29

Wordnet in NLTK

‣ Documentation: http://nltk.googlecode.com/svn/
trunk/doc/howto/wordnet.html

‣ WordNet can be imported like this:
‣ >>> from nltk.corpus import wordnet as wn

‣ Getting the synsets:
‣ >>> wn.synsets('dog')

‣ [Synset('dog.n.01'), Synset('frump.n.01'), Synset('dog.n.03'),
Synset('cad.n.01'),Synset('frank.n.02'), Synset('pawl.n.01'),
Synset('andiron.n.01'), Synset('chase.v.01')]

‣ >>> wn.synsets('dog', pos=wn.VERB)

‣ [Synset('chase.v.01')]

Wordnet in NLTK

‣ Accessing the different parts of a WN entry:
‣ >>> wn.synset('dog.n.01').definition

‣ 'a member of the genus Canis (probably descended from the common
wolf) that has been domesticated by man since prehistoric times;
occurs in many breeds'

‣ >>> wn.synset('dog.n.01').examples

‣ ['the dog barked all night']

‣ >>> wn.synset('dog.n.01').lemmas

‣ [Lemma('dog.n.01.dog'), Lemma('dog.n.01.domestic_dog'),
Lemma('dog.n.01.Canis_familiaris')]

‣ >>> [lemma.name for lemma in wn.synset('dog.n.01').lemmas]

‣ ['dog', 'domestic_dog', 'Canis_familiaris']

‣ >>> wn.lemma('dog.n.01.dog').synset

Wordnet in NLTK

‣ Hypernyms:
‣ >>> dog1 = wn.synset('dog.n.01')

‣ >>> dog1.hypernyms()

‣ [Synset('domestic_animal.n.01'), Synset('canine.n.02')]

‣ Hyponyms:
‣ >>> dog1.hyponyms()

‣ [Synset('puppy.n.01'), Synset('great_pyrenees.n.01'),
Synset('basenji.n.01'), ...]

‣ Hypernym closure: ...

Word Similarity

Outline

‣ Motivations

‣ Thesaurus-based measures

‣ Distributional measures

‣ Evaluation

Motivations

‣ Synonymy is a binary relation
‣ Two words are either synonymous or not

‣ For many applications, we want a looser metric
‣ Word similarity or word distance

‣ Informally: two words are more similar if they share
more “features” of meaning

‣ Similarity and distance are relations between senses:
‣ bank1 is similar to fund3 rather than “bank is like fund”

‣ We’ll compute them over both words and senses

Why word similarity

‣ Information retrieval

‣ Question answering

‣ Machine translation

‣ Natural language generation

‣ Automatic essay grading

‣ Plagiarism detection

‣ Document classification/clustering

‣ ...

Two main classes of algorithms

‣ Thesaurus-based algorithms
‣ Words are compared in terms of how “close” they are in the

thesaurus (e.g., Wordnet)

‣ Requires a thesaurus (and a corpus)

‣ Distributional algorithms
‣ Words are compared in terms of the shared number of contexts

they can appear in

‣ Requires (a lot of!) text but no thesaurus

Thesaurus-based word similarity

‣ We could use anything in the thesaurus:

‣ Meronymy, glosses, example sentences

‣ In practice, we only use the is-a/subsumption/hypernym
hierarchy

‣ Word similarity vs. word relatedness

‣ Similar words are near-synonyms

‣ Related words are in the same “semantic field”

‣ Car, gasoline: related

‣ Car, bicycle: similar

Path-based similarity

‣ Two words are similar if “nearby” in thesaurus hierarchy
(i.e. short path between them)

Path-based similarity

‣ Basic algorithm for path similarity:

‣ compute # of edges in the shortest IS-A path in the thesaurus
graph between the sense nodes c1 and c2

‣

‣ Variants of this measure proposed by: Hirst and St-Onge
(1998), Leacock & Chodorov (1998) ,Wu and Palmer (1994)

‣ One can approximate word similarity by taking the most
similar sense pair (Resnik, 1995)

simpath(c1, c2) = − log pathlength(c1, c2)

wordsim(w1, w2) = max
c1∈senses(w1),c2∈senses(w2)

simpath(c1, c2)

Problem with basic path-based similarity

‣ Assumes each link represents a uniform distance

‣ “nickel”-“money” seems closer than “nickel”-“standard”

‣ Need a finer-grained metric which lets us represent the
distance of each edge independently

Thesaurus-based similarity using corpus statistics

‣ Idea: use the structure of thesaurus and add probabilistic
information derived from a corpus

‣ Let’s define P(c) as:

‣ The probability that a randomly selected word in a corpus is an
instance of concept c

‣

‣ The lower a node in the hierarchy, the lower its probability

‣ A given word appearing in corpus counts toward frequency
of all its hypernyms€

P(c) =

count(w)
w∈words(c)
∑

N

Thesaurus-based similarity using corpus statistics

‣ Wordnet hierarchy augmented with probabilities P(C)

Information Content (IC) similarity

‣ Similarity between two words is related to the amount
of information they have in common

‣ Information content:
‣ IC(c)=-log P(c)

‣ Lowest common subsumer, LCS(c1,c2):
‣ the lowest node in the hierarchy

‣ that subsumes (is a hypernym of) both c1 and c2

‣ Resnik (1995) ’s similarity:

‣ simresnik(c1, c2) = − log P (LCS(c1, c2))

Information Content (IC) similarity measures

‣ Resnik (1995)’s similarity:

‣ Lin (1998)’s similarity:

‣ Jiang and Conrath (1997)’s similarity:

‣

simresnik(c1, c2) = − log P (LCS(c1, c2))

simlin(c1, c2) =
2P (LCS(c1, c2))

log P (c1) + log P (c2)

simJC(c1, c2) =
1

2 log P (LCS((c1, c2))− (log P (c1) + log P (c2))

Dictionary-based similarity: Extended Lesk Algorithm

‣ Hypothesis: two concepts are similar if their glosses
contain similar words

‣ drawing paper: paper that is specially prepared for use in
drafting

‣ decal: the art of transferring designs from specially prepared
paper to a wood or glass or metal surface

‣ For each n-word phrase that occurs in both glosses

‣ Add a score of n2 (to favor multi-word overlaps)

‣ paper and specially prepared gives 12 + 22 = 5…

‣ Extented Lesk also computes overlaps between
hypernyms, hyponyms, meronyms glosses

Summary: thesaurus-based similarity

‣ NLTK implements these metrics and other
thesaurus-based metrics in its wordnet module.

Evaluating thesaurus-based similarity

‣ Intrinsic Evaluation:

‣ Correlation coefficient between algorithm scores and word
similarity ratings from humans

‣ Extrinsic (task-based, end-to-end) Evaluation:

‣ Embed in some end application

‣ Malapropism (spelling error) detection

‣ Essay grading

‣ Plagiarism Detection

‣ Language modeling in some application

‣ Jiang-Conrath and Extended Lesk perform best

Problems with thesaurus-based methods

‣ We don’t have a thesaurus for every language

‣ Even if we do, many words are missing (e.g., new words,
domain specific words)

‣ Mostly, they rely on hyponym info:

‣ Strong for nouns, but lacking for adjectives and even verbs

‣ Alternative

‣ Distributional methods for word similarity

Distributional methods for word similarity

‣ Firth (1957): “You shall know a word by the company it
keeps!”

‣ Nida (1975)’s example noted by Lin (1998):

‣ A bottle of tezgüino is on the table

‣ Everybody likes tezgüino

‣ Tezgüino makes you drunk

‣ We make tezgüino out of corn.

‣ Intuition:

‣ just from these contexts a human could guess meaning of
tezguino

‣ So we should look at the surrounding contexts, see what
other words have similar context.

Word meaning as context vector

‣ Consider a target word w
‣ Suppose we had one binary feature fi for each of the N

words in the lexicon vi

‣ Which means “word vi occurs in the neighborhood of w”

‣ Word meaning represented as context vector:
‣ w =(f1,f2,f3,…,fN)

‣ If w=tezguino, v1=bottle, v2=drunk, v3=matrix:
‣ w = (1,1,0,…)

Intuition

‣ Define two words by these sparse features vectors

‣ Apply a vector distance metric

‣ Say that two words are similar if two vectors are similar

Distributional similarity

‣ Three main things to specify:

‣ 1. What’s the most adequate representation of context?

‣ How to define co-occurrence terms? Simple word co-
occurrences or more refined?

‣ 2. How do measure the association with context?

‣ How do we weight the co-occurrence terms: binary, frequency,
mutual information?

‣ 3. How do we define similarity between co-occurrences
vectors

‣ Which vector distance metric should we use: Euclidean/
Manhattan distance, cosine, Jaccard?

1. Defining co-occurrence vectors

‣ We could have windows

‣ Bag-of-words

‣ We generally remove stopwords

‣ But the vectors are still very sparse...

‣ So instead of using ALL the words in the neighborhood,
how about just the words occurring in particular
grammatical relations (Hindle, 1990)

‣ For example, works like tea, water, beer are all frequent
direct objects of the verb drink.

‣ Good news is: there are lot of dependency parsers out
there that can give us relations: subject, DO, IO,
modifiers, ...

I. Defining co-occurrence vectors

‣ Each dependency parse gives us a set of dependency
tuples (= our contexts or features)

‣ These tuples are used to build co-occurrence vectors:

2. Weighting the counts

‣ We have our features/word’s contexts, but we still don’t
know how to weight them

‣ Some options:

‣ Binary values
‣ assocbinary(w,f) = 0 or 1 if word appears in context f

‣ Frequency:
‣ assocprob(w,f) = P(f,w) = count(w,f)/count(w’) (where w’ are all the words

appearing in context f = (r,w’))

‣ Too coarse:

‣ These schemes are not good at distinguishing informative
contexts from uninformative ones: (has-obj water)/(has-obj it)

‣ We need a measure that asks how much more often
than chance the feature co-occurs with the word

2. Weighting the counts: Mutual Information

‣ Mutual information: between 2 random variables X & Y

‣ Pointwise mutual information (PMI): measures how
often two events x and y occur, compared with what we
would expect if they were independent:

‣

2. Weighting the counts: Mutual Information

‣ PMI between a target word w and a feature f :

‣ Lin (1998) measure is a variant of PMI, breaks down
expected value for P(f) differently:

2. Weighting the counts: PMI rather than frequency

‣ “drink it” is more common than “drink wine”

‣ But “wine” is a better “drinkable” thing than “it”

‣ Idea:

‣ We need to control for change (expected frequency)

‣ We do this by normalizing by the expected frequency we
would get assuming independence

2. Weighting the counts: other measures

‣ See Manning and Schuetze (1999) for more

3. Similarity between vectors

61

3. Similarity between vectors

62

Evaluating similarity

‣ Intrinsic Evaluation:

‣ Correlation coefficient between algorithm scores and word
similarity ratings from humans

‣ Extrinsic (task-based, end-to-end) Evaluation:
‣ Malapropism (spelling error) detection

‣ WSD

‣ Essay grading

‣ Taking TOEFL multiple-choice vocabulary tests

‣ Language modeling in some application

