Sémantique lexicale computationnelle

Traitement sémantique automatique des langues naturelles

Pascal Denis INRIA

pascal.denis@inria.fr

(Slides réalisés à partir du cours de Dan Jurafsky au LSA 2008 et de celui de Katrin Erk à UT Austin 2007)

> Master en Linguistique Informatique Université Paris 7

> > Année 2009-2010

Outline

- Introduction
- Lexical semantics basics
- Online resources: WordNet
- Computational lexical semantics

Word Sense Disambiguation (WSD)

- Semantic Role Labeling (SRL)
- Word similarity
- Lexical Acquisition

Introduction

Introduction

- So far, we've learned to compute and interpret semantic representations
 - A man bought a donkey.
 - $\exists x, y, t \ [man'(x) \land donkey'(y) \land buy'(x, y, t) \land t < now]$
- Nice, but we still don't have a full understanding of this sentence
 - what man', donkey', and buy' actually mean?
 - no treatment of lexical ambiguity: e.g., John went to the bank
 - no way to draw inferences: A man bought an animal, A man now owns a donkey, ...

Three Perspectives on Meaning

- Lexical Semantics
 - The meanings of individual words
- Compositional Semantics
 - How those meanings combine to make meanings for individual sentences/clauses or utterances
- Discourse Semantics/Pragmatics
 - How sentence/clause meanings combine with each other and with other facts about various kinds of context to make meanings for a text or discourse
 - Dialog or Conversation is often lumped together with Discourse

Lexical Semantics Basics

Outline

- What's a word (for lexical semantics)?
- How to represent word meaning?
- Lexical ambiguity
 - homonymy
 - polysemy
- Lexical relations
 - Synonymy vs.Antonymy
 - Hypernomy vs. Hyponomy
 - Meronomy vs. Holonymy

What's a word?

- What a word is varies according to uses: tokens, stems, lemmas,...
- For lexical semantics, the unit we want is the lemma
 - Singular form for nouns: carpet is the lemma for carpets
 - Infinitive form for verbs: faire is the lemma for feras
- Lemmatization is the process of mapping a word form to a lemma (not always deterministic: e.g. *found*)
- Lexeme: An abstract pairing of a lemma with a single meaning representation
- Lexicon: A collection of lexemes

How to represent word meaning?

- In theoretical linguistics:
 - Definitional: necessary and sufficient conditions
 - bird(x) iff animal(x) & has-wings(x) & ...
 - Semantic primitives
 - hen:+chicken, +adult, +female
 - KILL(x,y) <=> CAUSE(x,BECOME(NOT(ALIVE(y)))
- In computational linguistics:
 - Relational: semantic network (e.g., Wordnet)
 - words in relation to other words (IS-A, HAS-A, ...)
 - Associative/Distributional
 - similar meanings <=> similar contexts

Lexical ambiguity

- Some lemmas have multiple different meanings:
 - "Instead, a bank can hold the investments in a custodial account in the client's name"
 - "But as agriculture burgeons on the east <u>bank</u>, the river will shrink even more"
- Thus, bank here has two senses:
 - bank I: financial institution
 - bank2: slop along river
- Most non-rare words have different meanings
- The task of mapping a word to its correct sense is called Word Sense Disambiguation (or WSD)

Types of lexical ambiguities

Homonymy

- Accidental: coincidence that the same lemma has those different senses, no relation between senses (doesn't hold across languages)
- Examples: bank, pitcher, ...
- Homonymy vs. homography vs. homophony

Polysemy

- Systematic: the relation between the senses other words (tends to hold across languages)
- Examples: *bank*, *chicken*, *plum*, ...
- Typical relations: BUILDING-ORGANIZATION, ANIMAL-MEAT, TREE-FRUIT

Homonymes: glace -> ice cream/mirror batterie -> drums/battery mousse, tour -> masc/fem

Homographes: un as, tu as

Homophones:

- # maitre/metre/mettre
- # paire, pere; mere/mer/maire
- # Sot, saut, sceau et seau
- * vers, ver, verre, vert et vair
- # mer, mère et maire

Lexical ambiguity test

- Consider examples of the word serve:
 - Which flights serve breakfast?
 - Does America West serve Philadelphia?
- The zeugma/copredication test:
 - Poes United serve breakfast and San Jose?
- This test works better for homonymy than polysemy:
 - John works for the bank across the street.

Synonyms

- Words have the same meaning in some or all contexts:
 - big / large
 - automobile / car
 - vomit / throw up
 - water / H_20
- Two lexemes are synonyms if they can be successfully substituted for each other in all situations
 - If so they have the same propositional meaning
- Few or no examples of perfect synonymy:
 - Why should there be?
 - Sensitivity to register, genre, ...

Relation between senses rather than words

- Consider the words big and large
- Are they synonyms?
 - How <u>big</u> is that plane?
 - Would I be flying on a <u>large</u> or small plane?
- How about here:
 - Miss Nelson, for instance, became a kind of <u>big sister</u> to Benjamin.
 - ?Miss Nelson, for instance, became a kind of <u>large sister</u> to Benjamin.
- Why?
 - big has a sense that means being older, or grown up

Antonyms

- Senses that are opposites with respect to one feature of their meaning
- Otherwise, they are very similar!
 - dark / light
 - short / long
 - hot / cold
 - up / down
 - in / out
- More formally: antonyms define a binary opposition (pretty/ugly) or at opposite ends of a scale (long/short, fast/slow) or "reversives" (rise/fall, up/down)

Hyponymy

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
 - *car* is a hyponym of *vehicle*
 - dog is a hyponym of animal
 - mango is a hyponym of fruit
- Conversely
 - vehicle is a hypernym/superordinate of car
 - animal is a hypernym of dog
 - fruit is a hypernym of mango

Hypernymy more formally

- Extensional:
 - The class denoted by the superordinate
 - extensionally includes the class denoted by the hyponym
- Entailment:
 - A sense A is a hyponym of sense B if being an A entails being a B
- Hyponymy is usually transitive
 - A hypo B and B hypo C entails A hypo C

Other lexical relations

. . .

- Meronymy-holonymy: senses are in a part-whole relationship
 - wheel is a meronym of car
 - car is a holonym of wheel

Wordnet

What is Wordnet?

- Hierarchical lexical database for English
- Developed by lexicographers and psycholinguists at Princeton since 1985 (hugely expensive): <u>http://wordnet.princeton.edu</u>
- Basic unit: **synset** (i.e., list of near-synonyms).
- Each entry contains synset, definition, examples, and links to related synsets.
- WN encodes lexical relations: syno-/antonymy, hyper-/hyponymy, mero-/holonymy, etc.
- Wordnets being for other languages (Czech, German, French, ...), both within and outside the EuroWordnet project (e.g., WOLF).
- WN is heavily used for tasks related to Computational Semantics.

WordNet's coverage

Category	Unique Forms
Noun	117,097
Verb	11,488
Adjective	22,141
Adverb	4,601

Format of Wordnet Entries

The noun "bass" has 8 senses in WordNet.
1. bass¹ - (the lowest part of the musical range)
2. bass², bass part¹ - (the lowest part in polyphonic music)
3. bass³, basso¹ - (an adult male singer with the lowest voice)
4. sea bass¹, bass⁴ - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass¹, bass⁵ - (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
6. bass⁶, bass voice¹, basso² - (the lowest adult male singing voice)
7. bass⁷ - (the member with the lowest range of a family of musical instruments)
8. bass⁸ - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet. 1. bass¹, deep⁶ - (having or denoting a low vocal or instrumental range) *"a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"*

WordNet Noun Relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 ightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 ightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 ightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

WordNetVerb Relations

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^9$
Troponym	From a verb (event) to a specific manner elaboration of that verb	$walk^1 ightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	snore $^1 ightarrow sleep^1$
Antonym	Opposites	$increase^1 \iff decrease^1$

WordNet Hierarchies

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                  => living thing, animate thing,
                     => whole, unit
                        => object, physical object
                           => physical entity
                              => entity
               => causal agent, cause, causal agency
                  => physical entity
                     => entity
Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                  => physical entity
                     => entity
```

How is "sense" defined in WordNet?

- The set of near-synonyms for a WordNet sense is called a synset (synonym set); it's their version of a sense or a concept
- Example: *chump* as a noun to mean
 - {chump¹, fool², gull¹, mark⁹, patsy¹, fall guy¹, sucker¹, soft touch¹, mug²}
- Each of these senses share this same gloss
- Thus for WordNet, the meaning of this sense of chump is this list.

Wordnet: hyponyms

- (18)<u>S:</u> (n) beer (a general name for alcoholic beverages made by fermenting a cereal (or mixture of cereals) flavored with hops)
 <u>direct hyponym</u> / <u>full hyponym</u>
 - <u>S:</u> (n) <u>draft beer</u>, <u>draught beer</u> (beer drawn from a keg)
 - S: (n) suds (a dysphemism for beer (especially for lager that effervesces))
 - S: (n) lager, lager beer (a general term for beer made with bottom fermenting yeast (usually by decoction mashing); originally it was brewed in March or April and matured until September)
 - <u>S:</u> (n) <u>Munich beer</u>, <u>Munchener</u> (a dark lager produced in Munich since the 10th century; has a distinctive taste of malt)
 - S: (n) bock, bock beer (a very strong lager traditionally brewed in the fall and aged through the winter for consumption in the spring)
 - <u>S:</u> (n) <u>light beer</u> (lager with reduced alcohol content)
 - S: (n) Oktoberfest, Octoberfest (a strong lager made originally in Germany for the Oktoberfest celebration; Sweet and copper-colored)
 - S: (n) Pilsner, Pilsener (a pale lager with strong flavor of hops; first brewed in the Bohemian town of Pilsen)
 - S: (n) malt, malt liquor (a lager of high alcohol content; by law it is considered too alcoholic to be sold as lager or beer)
 - S: (n) ale (a general name for beer made with a top fermenting yeast; in some of the United States an ale is (by law) a brew of more than 4% alcohol by volume)
 - S: (n) <u>Weissbier</u>, <u>white beer</u>, <u>wheat beer</u> (a general name for beers made from wheat by top fermentation; usually very pale and cloudy and effervescent)
 - S: (n) <u>Weizenbier</u> (a general name in southern Germany for wheat beers)
 - <u>S:</u> (n) <u>Weizenbock</u> (a German wheat beer of bock strength)
 - <u>S:</u> (n) <u>bitter</u> (English term for a dry sharp-tasting ale with strong flavor of hops (usually on draft))
 - <u>S:</u> (n) <u>Burton</u> (a strong dark English ale)
 - S: (n) pale ale (an amber colored ale brewed with pale malts; similar to bitter but drier and lighter)
 - S: (n) porter, porter's beer (a very dark sweet ale brewed from roasted unmalted barley)
 - S: (n) stout (a strong very dark heavy-bodied ale made from pale malt and roasted unmalted barley and (often) caramel malt with hops)
 - <u>S:</u> (n) <u>Guinness</u> (a kind of bitter stout)
 - direct hypernym / inherited hypernym / sister term
 - <u>derivationally related form</u>

Wordnet: hypernyms

- (18)<u>S:</u> (n) beer (a general name for alcoholic beverages made by fermenting a cereal (or mixture of cereals) flavored with hops)
 o direct hyponym / full hyponym
 - direct hypernym / inherited hypernym / sister term
 - <u>S:</u> (n) <u>brew</u>, <u>brewage</u> (drink made by steeping and boiling and fermenting rather than distilling)
 - S: (n) <u>alcohol</u>, <u>alcoholic drink</u>, <u>alcoholic beverage</u>, <u>intoxicant</u>, <u>inebriant</u> (a liquor or brew containing alcohol as the active agent) "alcohol (or drink) ruined him"
 - S: (n) <u>beverage</u>, <u>drink</u>, <u>drinkable</u>, <u>potable</u> (any liquid suitable for drinking) "may I take your beverage order?"
 - S: (n) food, nutrient (any substance that can be metabolized by an animal to give energy and build tissue)
 - S: (n) <u>substance</u> (a particular kind or species of matter with uniform properties) "shigella is one of the most toxic substances known to man"
 - S: (n) matter (that which has mass and occupies space) "physicists study both the nature of matter and the forces which govern it"
 - <u>S:</u> (n) <u>physical entity</u> (an entity that has physical existence)
 - <u>S:</u> (n) <u>entity</u> (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
 - <u>S:</u> (n) <u>liquid</u> (a substance that is liquid at room temperature and pressure)
 - S: (n) <u>fluid</u> (a substance that is fluid at room temperature and pressure)
 - S: (n) <u>substance</u> (the real physical matter of which a person or thing consists) "DNA is the substance of our genes"
 - <u>S:</u> (n) <u>matter</u> (that which has mass and occupies space) "physicists study both the nature of matter and the forces which govern it"
 - <u>S:</u> (n) <u>physical entity</u> (an entity that has physical existence)
 - <u>S:</u> (n) <u>entity</u> (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
 - S: (n) part, portion, component part, component, constituent (something determined in relation to something that includes it) "he wanted to feel a part of something bigger than himself"; "I read a portion of the manuscript"; "the smaller component is hard to reach"; "the animal constituent of plankton"
 - <u>S:</u> (n) <u>relation</u> (an abstraction belonging to or characteristic of two entities or parts together)

Wordnet: other relations

- (163)<u>S:</u> (n) night, <u>nighttime</u>, <u>dark</u> (the time after sunset and before sunrise while it is dark outside)
 - <u>direct hyponym</u> / <u>full hyponym</u>
 - part meronym
 - S: (n) evening (the early part of night (from dinner until bedtime) spent in a special way) "an evening at the opera"
 - <u>S:</u> (n) <u>late-night hour</u> (the latter part of night)
 - S: (n) midnight (12 o'clock at night; the middle of the night) "young children should not be allowed to stay up until midnight"
 - S: (n) small hours (the hours just after midnight)
 - <u>S:</u> (n) <u>lights-out</u> (a prescribed bedtime)
 - <u>direct hypernym</u> / <u>inherited hypernym</u> / <u>sister term</u>
 - part holonym
 - S: (n) day, twenty-four hours, twenty-four hour period, 24-hour interval, solar day, mean solar day (time for Earth to make a complete rotation on its axis) "two days later they left"; "they put on two performances every day"; "there are 30,000 passengers per day"
 - <u>antonym</u>
 - W: (n) day [Opposed to: night] (the time after sunrise and before sunset while it is light outside) "the dawn turned night into day"; "it is easier to make the repairs in the daytime"
 - <u>derivationally related form</u>
 - W: (adj) nightly [Related to: night] (happening every night) "nightly television now goes on until 3:00 or 4:00 a.m."

Wordnet in NLTK

- Documentation: http://nltk.googlecode.com/svn/ trunk/doc/howto/wordnet.html
- WordNet can be imported like this:
 - >>> from nltk.corpus import wordnet as wn
- Getting the synsets:
 - >>> wn.synsets('dog')
 - [Synset('dog.n.01'), Synset('frump.n.01'), Synset('dog.n.03'), Synset('cad.n.01'), Synset('frank.n.02'), Synset('pawl.n.01'), Synset('andiron.n.01'), Synset('chase.v.01')]
 - >> wn.synsets('dog', pos=wn.VERB)
 - [Synset('chase.v.01')]

Wordnet in NLTK

- Accessing the different parts of a WN entry:
 - >> wn.synset('dog.n.01').definition
 - 'a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds'
 - >>> wn.synset('dog.n.01').examples
 - ['the dog barked all night']
 - >>> wn.synset('dog.n.01').lemmas
 - [Lemma('dog.n.01.dog'), Lemma('dog.n.01.domestic_dog'), Lemma('dog.n.01.Canis_familiaris')]
 - >>> [lemma.name for lemma in wn.synset('dog.n.01').lemmas]
 - ['dog', 'domestic_dog', 'Canis_familiaris']
 - >>> wn.lemma('dog.n.01.dog').synset

Wordnet in NLTK

- Hypernyms:
 - >> dogI = wn.synset('dog.n.0I')
 - >>> dogl.hypernyms()
 - [Synset('domestic_animal.n.01'), Synset('canine.n.02')]
- Hyponyms:
 - >>> dogl.hyponyms()
 - [Synset('puppy.n.01'), Synset('great_pyrenees.n.01'), Synset('basenji.n.01'), ...]
- Hypernym closure: ...

Word Similarity

Outline

- Motivations
- Thesaurus-based measures
- Distributional measures
- Evaluation

Motivations

- Synonymy is a binary relation
 - Two words are either synonymous or not
- For many applications, we want a looser metric
 - Word similarity or word distance
- Informally: two words are more similar if they share more "features" of meaning
- Similarity and distance are relations between senses:
 - bank I is similar to fund3 rather than "bank is like fund"
- We'll compute them over both words and senses

Why word similarity

- Information retrieval
- Question answering
- Machine translation
- Natural language generation
- Automatic essay grading
- Plagiarism detection
- Document classification/clustering

Two main classes of algorithms

Thesaurus-based algorithms

- Words are compared in terms of how "close" they are in the thesaurus (e.g., Wordnet)
- Requires a thesaurus (and a corpus)

- Distributional algorithms
 - Words are compared in terms of the shared number of contexts they can appear in
 - Requires (a lot of!) text but no thesaurus

Thesaurus-based word similarity

- We could use anything in the thesaurus:
 - Meronymy, glosses, example sentences
- In practice, we only use the is-a/subsumption/hypernym hierarchy
- Word similarity vs. word relatedness
 - Similar words are near-synonyms
 - Related words are in the same "semantic field"
 - Car, gasoline: related
 - Car, bicycle: similar

Path-based similarity

 Two words are similar if "nearby" in thesaurus hierarchy (i.e. short path between them)

Path-based similarity

- Basic algorithm for path similarity:
 - compute # of edges in the shortest IS-A path in the thesaurus graph between the sense nodes c_1 and c_2
 - $sim_{path}(c_1, c_2) = -\log pathlength(c_1, c_2)$
- Variants of this measure proposed by: Hirst and St-Onge (1998), Leacock & Chodorov (1998), Wu and Palmer (1994)
- One can approximate word similarity by taking the most similar sense pair (Resnik, 1995)

 $wordsim(w_1, w_2) = \max_{c_1 \in senses(w_1), c_2 \in senses(w_2)} sim_{path}(c_1, c_2)$

Problem with basic path-based similarity

- Assumes each link represents a uniform distance
- "nickel"-"money" seems closer than "nickel"-"standard"

Need a finer-grained metric which lets us represent the distance of each edge independently

Thesaurus-based similarity using corpus statistics

- Idea: use the structure of thesaurus and add probabilistic information derived from a corpus
 - Let's define P(c) as:
 - The probability that a randomly selected word in a corpus is an instance of concept \boldsymbol{c}

$$P(c) = \frac{\sum count(w)}{N}$$

- The lower a node in the hierarchy, the lower its probability
- A given word appearing in corpus counts toward frequency of all its hypernyms

Thesaurus-based similarity using corpus statistics

• Wordnet hierarchy augmented with probabilities P(C)

Information Content (IC) similarity

- Similarity between two words is related to the amount of information they have in common
- Information content:
 - $IC(c) = -\log P(c)$
- Lowest common subsumer, LCS(c1,c2):
 - the lowest node in the hierarchy
 - that subsumes (is a hypernym of) both c1 and c2
- Resnik (1995) 's similarity:
 - $= sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$

Information Content (IC) similarity measures

Resnik (1995)'s similarity:

 $sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$

Lin (1998)'s similarity:

$$sim_{lin}(c_1, c_2) = \frac{2P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$

Jiang and Conrath (1997)'s similarity:

$$sim_{JC}(c_1, c_2) = \frac{1}{2\log P(LCS((c_1, c_2)) - (\log P(c_1) + \log P(c_2)))}$$

Dictionary-based similarity: Extended Lesk Algorithm

- Hypothesis: two concepts are similar if their glosses contain similar words
 - In the drawing paper: paper that is specially prepared for use in drafting
 - decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface
- For each *n*-word phrase that occurs in both glosses
 - Add a score of n^2 (to favor multi-word overlaps)
 - paper and specially prepared gives $I^2 + 2^2 = 5...$
- Extented Lesk also computes overlaps between hypernyms, hyponyms, meronyms glosses

Summary: thesaurus-based similarity

$$\begin{aligned} \sin_{\text{path}}(c_1, c_2) &= -\log \text{pathlen}(c_1, c_2) \\ \sin_{\text{Resnik}}(c_1, c_2) &= -\log P(\text{LCS}(c_1, c_2)) \\ \sin_{\text{Lin}}(c_1, c_2) &= \frac{2 \times \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \\ \sin_{\text{jc}}(c_1, c_2) &= \frac{1}{2 \times \log P(\text{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2))} \\ \sin_{\text{eLesk}}(c_1, c_2) &= \sum_{r,q \in \text{RELS}} \text{overlap}(\text{gloss}(r(c_1)), \text{gloss}(q(c_2))) \end{aligned}$$

NLTK implements these metrics and other thesaurus-based metrics in its wordnet module.

Evaluating thesaurus-based similarity

- Intrinsic Evaluation:
 - Correlation coefficient between algorithm scores and word similarity ratings from humans
- Extrinsic (task-based, end-to-end) Evaluation:
 - Embed in some end application
 - Malapropism (spelling error) detection
 - Essay grading
 - Plagiarism Detection
 - Language modeling in some application
- Jiang-Conrath and Extended Lesk perform best

Problems with thesaurus-based methods

- We don't have a thesaurus for every language
- Even if we do, many words are missing (e.g., new words, domain specific words)
- Mostly, they rely on hyponym info:
 - Strong for nouns, but lacking for adjectives and even verbs
- Alternative
 - Distributional methods for word similarity

Distributional methods for word similarity

- Firth (1957): "You shall know a word by the company it keeps!"
- Nida (1975)'s example noted by Lin (1998):
 - A bottle of **tezgüino** is on the table
 - Everybody likes tezgüino
 - Tezgüino makes you drunk
 - We make **tezgüino** out of corn.
- Intuition:
 - just from these contexts a human could guess meaning of <u>tezguino</u>
 - So we should look at the surrounding contexts, see what other words have similar context.

Word meaning as context vector

- Consider a target word w
- Suppose we had one binary feature f_i for each of the N words in the lexicon v_i
 - Which means "word v_i occurs in the neighborhood of w"
- Word meaning represented as context vector:

• $\mathbf{w} = (f1, f2, f3, ..., fN)$

▶ If *w*=*tezguino*, *v*1=*bottle*, *v*2=*drunk*, *v*3=*matrix*:

• $\mathbf{w} = (1, 1, 0, ...)$

Intuition

- Define two words by these sparse features vectors
- Apply a vector distance metric
- Say that two words are similar if two vectors are similar

| | arts | boil | data | function | large | sugar | summarized | water |
|-------------|------|------|------|----------|-------|-------|------------|-------|
| apricot | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| pineapple | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| digital | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| information | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |

Distributional similarity

- Three main things to specify:
 - I.What's the most adequate representation of context?
 - How to define co-occurrence terms? Simple word cooccurrences or more refined?
 - 2. How do measure the association with context?
 - How do we weight the co-occurrence terms: binary, frequency, mutual information?
 - 3. How do we define similarity between co-occurrences vectors
 - Which vector distance metric should we use: Euclidean/ Manhattan distance, cosine, Jaccard?

I. Defining co-occurrence vectors

- We could have windows
 - Bag-of-words
 - We generally remove stopwords
- But the vectors are still very sparse...
- So instead of using ALL the words in the neighborhood, how about just the words occurring in particular grammatical relations (Hindle, 1990)
 - For example, works like *tea*, *water*, *beer* are all frequent direct objects of the verb *drink*.
- Good news is: there are lot of dependency parsers out there that can give us relations: subject, DO, IO, modifiers, ...

I. Defining co-occurrence vectors

- Each dependency parse gives us a set of dependency tuples (= our contexts or features)
- I discovered dried tangerines: discover (subject I) I (subj-of discover) tangerine (obj-of discover) tangerine (adj-mod dried) dried (adj-mod-of tangerine)

These tuples are used to build co-occurrence vectors:

| | subj-of, absorb | subj-of, adapt | subj-of, behave | ••• | pobj-of, inside | pobj-of, into | ••• | nmod-of, abnormality | nmod-of, anemia | nmod-of, architecture | ••• | obj-of, attack | obj-of, call | obj-of, come from | obj-of, decorate |
nmod, bacteria | nmod, body | nmod, bone marrow | |
|------|-----------------|----------------|-----------------|-----|-----------------|---------------|-----|----------------------|-----------------|-----------------------|-----|----------------|--------------|-------------------|------------------|--------------------|------------|-------------------|--|
| cell | 1 | 1 | 1 | | 16 | 30 | | 3 | 8 | 1 | | 6 | 11 | 3 | 2 | 3 | 2 | 2 | |

2. Weighting the counts

- We have our features/word's contexts, but we still don't know how to weight them
- Some options:
 - Binary values
 - $assoc_{binary}(w,f) = 0$ or I if word appears in context f
 - Frequency:
 - assoc_{prob}(w,f) = P(f,w) = count(w,f)/count(w') (where w' are all the words appearing in context f = (r,w'))
- Too coarse:
 - These schemes are not good at distinguishing informative contexts from uninformative ones: (has-obj water)/(has-obj it)
- We need a measure that asks how much more often than chance the feature co-occurs with the word

2. Weighting the counts: Mutual Information

Mutual information: between 2 random variables X & Y

$$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

Pointwise mutual information (PMI): measures how often two events x and y occur, compared with what we would expect if they were independent:

$$I(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

2. Weighting the counts: Mutual Information

PMI between a target word w and a feature f :

$$\operatorname{assocpMI}(w,f) = \log_2 \frac{P(w,f)}{P(w)P(f)}$$

Lin (1998) measure is a variant of PMI, breaks down expected value for P(f) differently:

$$\operatorname{assoc}_{\operatorname{Lin}}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(r|w)P(w'|w)}$$

2. Weighting the counts: PMI rather than frequency

- "drink it" is more common than "drink wine"
- But "wine" is a better "drinkable" thing than "it"
- Idea:
 - We need to control for change (expected frequency)
 - We do this by normalizing by the expected frequency we would get assuming independence

| Object | Count | PMI assoc | Object | Count | PMI assoc |
|-----------------------------|-------------|-------------------------|---------------------------------------|-------------|----------------------|
| bunch beer | 2 | 12.34 | wine | 2 | 9.34 |
| tea | 2 | 11.75 | water | 7 | 7.65 |
| Pepsi | 2 | 11.75 | anything | 3 | 5.15 |
| champagne | 4 | 11.75 | much | 3 | 5.15 |
| liquid | 2 | 10.53 | it | 3 | 1.25 |
| beer | 5 | 10.20 | <some amount=""></some> | 2 | 1.22 |
| champagne
liquid
beer | 4
2
5 | 11.75
10.53
10.20 | much
it
<some amount=""></some> | 3
3
2 | 5.15
1.25
1.22 |

2. Weighting the counts: other measures

See Manning and Schuetze (1999) for more

$$\begin{aligned} \operatorname{assoc}_{\operatorname{prob}}(w,f) &= P(f|w) \\ \operatorname{assoc}_{\operatorname{PMI}}(w,f) &= \log_2 \frac{P(w,f)}{P(w)P(f)} \\ \operatorname{assoc}_{\operatorname{Lin}}(w,f) &= \log_2 \frac{P(w,f)}{P(w)P(r|w)P(w'|w)} \\ \operatorname{assoc}_{\operatorname{test}}(w,f) &= \frac{P(w,f) - P(w)P(f)}{\sqrt{P(f)P(w)}} \end{aligned}$$

3. Similarity between vectors

3. Similarity between vectors

$$\begin{aligned} \sin_{\text{cosine}}(\vec{v}, \vec{w}) &= \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \\ \sin_{\text{Jaccard}}(\vec{v}, \vec{w}) &= \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \\ \sin_{\text{Dice}}(\vec{v}, \vec{w}) &= \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)} \\ \sin_{\text{JS}}(\vec{v} || \vec{w}) &= D(\vec{v} | \frac{\vec{v} + \vec{w}}{2}) + D(\vec{w} | \frac{\vec{v} + \vec{w}}{2}) \end{aligned}$$

Evaluating similarity

- Intrinsic Evaluation:
 - Correlation coefficient between algorithm scores and word similarity ratings from humans
- Extrinsic (task-based, end-to-end) Evaluation:
 - Malapropism (spelling error) detection
 - WSD
 - Essay grading
 - Taking TOEFL multiple-choice vocabulary tests
 - Language modeling in some application