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Examples

Example I

S ! AB
A ! aA

| b
B ! bBc

| "

I Rewriting system
I Auxiliary vocabulary (N

for non-terminal)
I Start symbol (engendered

language)
I Multiple derivations
I Syntactic tree
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Examples

Example II

E ! E + E
| E ⇥ E
| (E )
| 0 | 1 | 2 . . . 8 | 9

I Syntactic ambiguity
I Semantic interpretation
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Examples

Example III

NP ! Det N 0

N 0 ! AdjP N 0

N 0 ! N
N 0 ! N Cpt
AdjP ! Adj AdjP
AdjP ! Adj
Cpt ! P NP
Det ! the | my
N ! cat | friend
Adj ! large | fierce
Prep ! of | to

I X-bar theory
I Recursive rules
I Center-embedding
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Definition

Formal grammar

Def. 12 ((Formal) Grammar)
A formal grammar is defined by h⌃,N, S ,Pi where
I ⌃ is an alphabet
I N is a disjoint alphabet (non-terminal vocabulary)
I S 2 V is a distinguished element of N, called the axiom
I P is a set of « production rules », namely a subset of the

cartesian product (⌃ [ N)⇤N(⌃ [ N)⇤ ⇥ (⌃ [ N)⇤.
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Definition

Immediate Derivation

Def. 13 (Immediate derivation)
Let G = h⌃,N, S ,Pi a grammar,
r 2 P a production rule, such that r : A �! u with u 2 (⌃ [ N)⇤;
f , g 2 (⌃ [ N)⇤ two “(proto-)words”,

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .
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Definition

Derivation

Def. 14 (Derivation)
f

G⇤�! g if f = g or
9f0, f1, f2, ..., fn s.t.
f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi
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Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f 2 (⌃ [ N)⇤.
LG(f ) = {g 2 X ⇤/f

G⇤�! g}

Def. 16 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)
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Language classes

Principle

Define language families on the basis of properties of the
grammars that generate them :

1. Four classes are defined, they are included one in another
2. A language is of type k if it can be recognized by a type k

grammar (and thus, by definition, by a type k � 1 grammar) ;
and cannot be recognized by a grammar of type k + 1.
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Language classes

Chomsky’s hierarchy

type 0 No restriction on
P ⇢ (X [ V )⇤V (X [ V )⇤ ⇥ (X [ V )⇤.

type 1 (context-sensitive grammars) All rules of P are of the
shape (u1Su2, u1mu2), where u1 and u2 2 (X [ V )⇤,
S 2 V and m 2 (X [ V )+.

type 2 (context-free grammar) All rules of P are of the
shape (S ,m), where S 2 V and m 2 (X [ V )⇤.

type 3 (regular grammars) All rules of P are of the shape
(S ,m), where S 2 V and m 2 X .V [ X [ {"}.
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Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E ) | a
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Language classes

Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language :

words with an equal number of a, b, and c .
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Language classes

Example 2: type 0

Type 0: S ! $S 0$ Aa ! aA $a ! a$
S 0 ! aAS 0 Ab ! bA $b ! b$
S 0 ! bBS 0 Ba ! aB A$ ! $a
S 0 ! " Bb ! bB B$ ! $b

$$ ! #
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Language classes

Example 2: type 0 (cont’d)
S

�
�
�
�
�
��

H
H

H
H

H
HH

$ S 0

�
�
�

H
H

H

a A S 0

�
�

H
H

b B S 0

"

$

$ a A b B $
a $ A b B $
a $ A b $ b
a $ b A $ b
a b $ A $ b
a b $ $ a b
a b # a b
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The Chomsky-Schützenberger hierarchy

Type 3 Finite automata/
Regular grammars

Type 2 Pushdown automata/
Context-free grammars

Type 1 Linear bounded automata/
Context-sensitive grammars

Type 0 Turing machines/
Unrestricted grammar
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Remarks

I Type 0 (Turing-recognizable) = recursively enumerable
languages
Type 1 (Turing-decidable) = recursive languages

I There are others ways to classify languages,
I either on other properties of the grammars;
I or on other properties of the languages

I Nested structures are preferred, but it’s not necessary
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The parsing problem: finding derivations

I Given a grammar G on some alphabet ⌃...
I The parsing problem for G :

Given some w 2 ⌃,
what are the derivations (if any) of w in G?

I (Solving the parsing problem for G entails solving the
recognition problem for L(G ).)
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Syntactic complexity vs semantic expressivity

I Context-free grammars are commonly used to describe the
syntax of many logical languages ( PL, FOL), some
programming languages, and parts of NL (! Day 2).

I Untyped �-calculus: CF syntax, Turing-complete semantics.
“How is this possible?”

I ! The syntactic complexity and the semantic expressivity of
interpreted languages are two distinct notions.

I Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is {0, 1}, a regular language,
compositionally interpreted as a Turing-complete language.
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Language classes

The recognition/parsing problems are very general

I Consider any binary (“yes/no”) problem P and see it as the set
of inputs for which the answer is positive.

I Let str be a linearisation function for the possible inputs of P ,
and L = {str(in) | in 2 P}.

I Solving P is equivalent to the recognition problem for L.
I More generally, any computable function f can be encoded as

a grammar s.t. after parsing the input w , the output f (w) can
be read off the derivation.

I ! One can compute “syntactically”: a grammar is a program.
(The parser is the machine that runs it.)

I The formalism of unrestricted grammars is a Turing-complete
programming language. (syntactically regular?)
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Language classes

Back to regular languages

(a|b).c*

b

a

c

Rat

Rec Reg

S  −−>  aX  |  bX

X  −−>  cX  | ε
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Let’s play with grammars

For each of the following grammars, give the generated language,
and the type they have in Chomsky’s hierarchy.

S ! S1S2
S1 ! aS1b | ab
S2 ! cS2 | c

S ! aSBC
S ! aBC
CB ! BC
aB ! ab
bB ! bb
bC ! bc
cC ! cc
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Let’s play with grammars (cont’d)

Give a contex-free grammar that generates each of the following
languages (alphabet ⌃ = {a, b, c}).
I L0 = {w 2 X ⇤ / w = an ; n � 0}
I L0

0 = {w 2 X ⇤ / w = anbnca ; n � 0}
I L1 = {w 2 X ⇤ / w = anbncp; n > 0 et p > 0}
I L2 = {w 2 X ⇤ / w = anbnambm; n,m � 1}
I L0

3 = {w 2 X ⇤ / |w |a = |w ]b}
I L3 = {w 2 X ⇤ / |w |a = 2|w ]b}
I L4 = {w 2 X ⇤ / 9x 2 X ⇤ tq w = xx}
I L5 = {w 2 X ⇤ / w = w}
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Are NL context-sensitive?
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