
Formal Languages and Linguistics

Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

1 / 107

Formal Languages and Linguistics
Formal Grammars

Examples

Overview

Formal Languages

Regular Languages

Formal Grammars
Examples
Definition
Language classes

Formal complexity of Natural Languages

54 / 107

Formal Languages and Linguistics
Formal Grammars

Examples

Example I

S ! AB
A ! aA

| b
B ! bBc

| "

I Rewriting system
I Auxiliary vocabulary (N

for non-terminal)
I Start symbol (engendered

language)
I Multiple derivations
I Syntactic tree

55 / 107

Formal Languages and Linguistics
Formal Grammars

Examples

Example II

E ! E + E
| E ⇥ E
| (E)
| 0 | 1 | 2 . . . 8 | 9

I Syntactic ambiguity
I Semantic interpretation

56 / 107

Formal Languages and Linguistics
Formal Grammars

Examples

Example III

NP ! Det N 0

N 0 ! AdjP N 0

N 0 ! N
N 0 ! N Cpt
AdjP ! Adj AdjP
AdjP ! Adj
Cpt ! P NP
Det ! the | my
N ! cat | friend
Adj ! large | fierce
Prep ! of | to

I X-bar theory
I Recursive rules
I Center-embedding

57 / 107

Formal Languages and Linguistics
Formal Grammars

Definition

Overview

Formal Languages

Regular Languages

Formal Grammars
Examples
Definition
Language classes

Formal complexity of Natural Languages

58 / 107

Formal Languages and Linguistics
Formal Grammars

Definition

Formal grammar

Def. 12 ((Formal) Grammar)
A formal grammar is defined by h⌃,N, S ,Pi where
I ⌃ is an alphabet
I N is a disjoint alphabet (non-terminal vocabulary)
I S 2 V is a distinguished element of N, called the axiom
I P is a set of « production rules », namely a subset of the

cartesian product (⌃ [N)⇤N(⌃ [N)⇤ ⇥ (⌃ [N)⇤.

59 / 107

Formal Languages and Linguistics
Formal Grammars

Definition

Immediate Derivation

Def. 13 (Immediate derivation)
Let G = h⌃,N, S ,Pi a grammar,
r 2 P a production rule, such that r : A �! u with u 2 (⌃ [N)⇤;
f , g 2 (⌃ [N)⇤ two “(proto-)words”,

• f derives into g (immediate derivation) with the rule r
(noted f

r�! g) iff
9v ,w s.t. f = vAw and g = vuw

• f derives into g (immediate derivation) in the grammar G
(noted f

G�! g) iff
9r 2 P s.t. f

r�! g .

60 / 107

Formal Languages and Linguistics
Formal Grammars

Definition

Derivation

Def. 14 (Derivation)
f

G⇤�! g if f = g or
9f0, f1, f2, ..., fn s.t.
f0 = f
fn = g

8i 2 [1, n] : fi�1
G�! fi

61 / 107

Formal Languages and Linguistics
Formal Grammars

Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f 2 (⌃ [N)⇤.
LG(f) = {g 2 X ⇤/f

G⇤�! g}

Def. 16 (Language engendered by a grammar)
The language engendered by a grammar G is the set of words of ⌃⇤

derived from the axiom.
LG = LG(S)

62 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Overview

Formal Languages

Regular Languages

Formal Grammars
Examples
Definition
Language classes

Formal complexity of Natural Languages

63 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Principle

Define language families on the basis of properties of the
grammars that generate them :

1. Four classes are defined, they are included one in another
2. A language is of type k if it can be recognized by a type k

grammar (and thus, by definition, by a type k � 1 grammar) ;
and cannot be recognized by a grammar of type k + 1.

64 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Chomsky’s hierarchy

type 0 No restriction on
P ⇢ (X [V)⇤V (X [V)⇤ ⇥ (X [V)⇤.

type 1 (context-sensitive grammars) All rules of P are of the
shape (u1Su2, u1mu2), where u1 and u2 2 (X [V)⇤,
S 2 V and m 2 (X [V)+.

type 2 (context-free grammar) All rules of P are of the
shape (S ,m), where S 2 V and m 2 (X [V)⇤.

type 3 (regular grammars) All rules of P are of the shape
(S ,m), where S 2 V and m 2 X .V [X [{"}.

65 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

66 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Examples

type 3:
S ! aS | aB | bB | cA
B ! bB | b
A ! cS | bB

type 2:
E ! E + T | T ,T ! T ⇥ F | F ,F ! (E) | a

66 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language :

words with an equal number of a, b, and c .

67 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Example 1 type 0

Type 0:
S ! SABC AC ! CA A ! a
S ! " CA ! AC B ! b
AB ! BA BC ! CB C ! c
BA ! AB CB ! BC

generated language : words with an equal number of a, b, and c .

67 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Example 2: type 0

Type 0: S ! $S 0$ Aa ! aA $a ! a$
S 0 ! aAS 0 Ab ! bA $b ! b$
S 0 ! bBS 0 Ba ! aB A$! $a
S 0 ! " Bb ! bB B$! $b

$$! #

68 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Example 2: type 0 (cont’d)
S

�
�
�
�
�
��

H
H

H
H

H
HH

$ S 0

�
�
�

H
H

H

a A S 0

�
�

H
H

b B S 0

"

$

$ a A b B $
a $ A b B $
a $ A b $ b
a $ b A $ b
a b $ A $ b
a b $ $ a b
a b # a b

69 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

The Chomsky-Schützenberger hierarchy

Type 3 Finite automata/
Regular grammars

Type 2 Pushdown automata/
Context-free grammars

Type 1 Linear bounded automata/
Context-sensitive grammars

Type 0 Turing machines/
Unrestricted grammar

70 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Remarks

I Type 0 (Turing-recognizable) = recursively enumerable
languages
Type 1 (Turing-decidable) = recursive languages

I There are others ways to classify languages,
I either on other properties of the grammars;
I or on other properties of the languages

I Nested structures are preferred, but it’s not necessary

71 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

The parsing problem: finding derivations

I Given a grammar G on some alphabet ⌃...
I The parsing problem for G :

Given some w 2 ⌃,
what are the derivations (if any) of w in G?

I (Solving the parsing problem for G entails solving the
recognition problem for L(G).)

72 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Syntactic complexity vs semantic expressivity

I Context-free grammars are commonly used to describe the
syntax of many logical languages (PL, FOL), some
programming languages, and parts of NL (! Day 2).

I Untyped �-calculus: CF syntax, Turing-complete semantics.
“How is this possible?”

I ! The syntactic complexity and the semantic expressivity of
interpreted languages are two distinct notions.

I Jot (https://en.wikipedia.org/wiki/Iota_and_Jot) is {0, 1}, a regular language,
compositionally interpreted as a Turing-complete language.

73 / 107

https://en.wikipedia.org/wiki/Iota_and_Jot

Formal Languages and Linguistics
Formal Grammars

Language classes

The recognition/parsing problems are very general

I Consider any binary (“yes/no”) problem P and see it as the set
of inputs for which the answer is positive.

I Let str be a linearisation function for the possible inputs of P ,
and L = {str(in) | in 2 P}.

I Solving P is equivalent to the recognition problem for L.
I More generally, any computable function f can be encoded as

a grammar s.t. after parsing the input w , the output f (w) can
be read off the derivation.

I ! One can compute “syntactically”: a grammar is a program.
(The parser is the machine that runs it.)

I The formalism of unrestricted grammars is a Turing-complete
programming language. (syntactically regular?)

74 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Back to regular languages

(a|b).c*

b

a

c

Rat

Rec Reg

S −−> aX | bX

X −−> cX | ε

75 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Let’s play with grammars

For each of the following grammars, give the generated language,
and the type they have in Chomsky’s hierarchy.

S ! S1S2
S1 ! aS1b | ab
S2 ! cS2 | c

S ! aSBC
S ! aBC
CB ! BC
aB ! ab
bB ! bb
bC ! bc
cC ! cc

76 / 107

Formal Languages and Linguistics
Formal Grammars

Language classes

Let’s play with grammars (cont’d)

Give a contex-free grammar that generates each of the following
languages (alphabet ⌃ = {a, b, c}).
I L0 = {w 2 X ⇤ / w = an ; n � 0}
I L0

0 = {w 2 X ⇤ / w = anbnca ; n � 0}
I L1 = {w 2 X ⇤ / w = anbncp; n > 0 et p > 0}
I L2 = {w 2 X ⇤ / w = anbnambm; n,m � 1}
I L0

3 = {w 2 X ⇤ / |w |a = |w]b}
I L3 = {w 2 X ⇤ / |w |a = 2|w]b}
I L4 = {w 2 X ⇤ / 9x 2 X ⇤ tq w = xx}
I L5 = {w 2 X ⇤ / w = w}

77 / 107

Formal Languages and Linguistics
Formal complexity of Natural Languages

Are NL context-sensitive?

References I
Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase

structure grammars. STUF-Language Typology and Universals, 14(1-4), 143–172.
Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.
Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.
Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural

Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information,
Leland Stanford Junior University.

Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence
for the Syntactic Prediction Locality Theory of Linguistic Complexity. Unpublished manuscript,
Massachusetts Institute of Technology.

Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to
Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information
Science, University of Pennsylvania.

Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil
Blackwell Oxford.

Mannell, Robert. 1999. Infinite number of sentences. part of a set of class notes on the Internet.
http://clas.mq.edu.au/speech/infinite_sentences/.

Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. Linguistics and
Philosophy, 8(3), 333–343.

Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic
minimalism, 617–643.

Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language
Processing. Slides for NASSLLI course
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.

Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context–Free
Grammars. Mathematical Systems Theory, 27, 511–546.

108 / 107

http://clas.mq.edu.au/speech/infinite_sentences/
http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf

	Formal Languages
	Basic concepts

	Regular Languages
	Formal Grammars
	Formal complexity of Natural Languages
	References

