Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/SN)

Cogmaster, september 2023

Overview

Formal Languages

Regular Languages

Automata

Properties

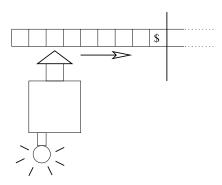
Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Metaphoric definition



Formal definition

Def. 9 (Finite deterministic automaton (FDA))

A finite state deterministic automaton $\ensuremath{\mathcal{A}}$ is defined by :

$$\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$$

Q is a finite set of states

 Σ is an alphabet

 q_0 is a distinguished state, the initial state,

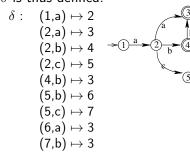
F is a subset of Q, whose members are called final/terminal states

 δ is a mapping **fonction** from $Q \times \Sigma$ to Q. Notation $\delta(q, a) = r$.

Example

Let us consider the (finite) language $\{aa, ab, abb, acba, accb\}$. The following automaton recognizes this language: $\langle Q, \Sigma, q_0, F, \delta \rangle$,

avec $Q = \{1, 2, 3, 4, 5, 6, 7\}$, $\Sigma = \{a, b, c\}$, $q_0 = 1$, $F = \{3, 4\}$, and δ is thus defined:



	а	b	С
$\rightarrow 1$	2		
2	3	4	5
← 3			
← 4		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 10 (Recognition)

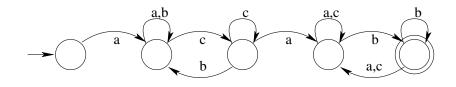
A word $a_1a_2...a_n$ is **recognized/accepted** by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Example

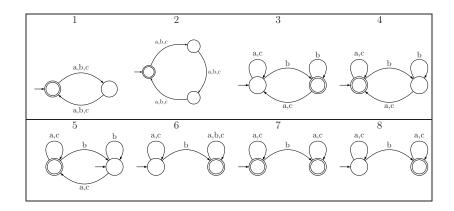


Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1. The set of words with an even length.
- 2. The set of words where the number of occurrences of *b* is divisible by 3.
- 3. The set of words ending with a b.
- 4. The set of words not ending with a b.
- 5. The set of words non empty not ending with a b.
- 6. The set of words comprising at least a b.
- 7. The set of words comprising at most a b.
- 8. The set of words comprising exactly one b.

Answers



Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is not excluded however that there be several paths for one word: in that case, the automaton is non deterministic.

What are the sources of non determinism?

- ▶ $\delta(a, S_1) = \{S_2, S_3\}$
- "spontaneous transition" = ε -transition

Equivalence theorems

For any non-deterministic automaton, it is possible to design a complete deterministic automaton that recognizes the same language.

Proofs: algorithms (constructive proofs)

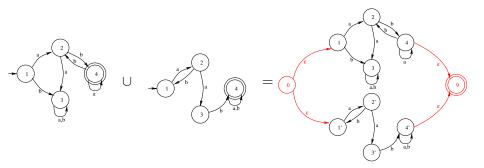
First "remove" ε -transitions, then "remove" multiple transitions.

Closure (1)

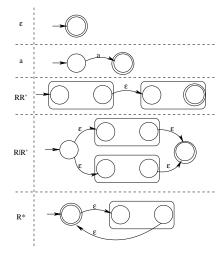
Regular languages are closed under various operations: if the languages L and L' are regular, so are:

```
▶ L \cup L' (union); L.L' (product); L^* (Kleene star) (rational operations)
```

Union of regular languages: an example



Rational operations



Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- ▶ $L \cup L'$ (union); L.L' (product); L^* (Kleene star) (rational operations)
 - ightarrow for every rational expression describing a language , there is a FSA that recognizes $\it L$

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- $\blacktriangleright L \cup L'$ (union); L.L' (product); L* (Kleene star) (rational operations)
 - \rightarrow for every rational expression describing a language, there is
 - a FSA that recognizes L and vice-versa

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- ▶ $L \cup L'$ (union); L.L' (product); L^* (Kleene star)

 (rational operations)
 - ightarrow for every rational expression describing a language , there is a FSA that recognizes L and vice-versa
- ▶ $L \cap L'$ (intersection); \overline{L} (complement)
- ▶ ..

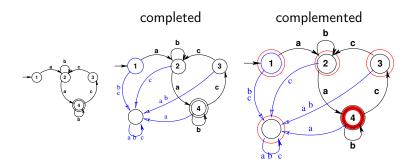
Intersection of regular languages

Algorithmic proof Deterministic complete automata

		ı				ı				ı	
	L_1	a	b		L_2	a	b		$L_1 \cap L_2$	a	b
$\stackrel{-}{\rightarrow}$	1	2	4	-	$\leftrightarrow 1$	2	5	•	ightarrow (1,1)	(2,2)	(4,5)
	2	4	3		2	5	3		(2,2)	(4,5)	(3,3)
\leftarrow	- 3	3	3		3	4	5		(4,5)	(4,5)	(4,5)
	4	4	4		4	1	4		(3,3)	(3,4)	(3,5)
	•				5	5	5		(3,4)	(3,1)	(3,4)
									\leftarrow (3,1)	(3,2)	(3,4)
									(3,2)	(3,4)	(3,3)
									(3,5)	(3,5)	(3,5)
											Sorbonne ; ; ; Nouvelle ; ; ;

Complement of a regular language

Deterministic complete automata



Pumping lemma (intuition)

Take an automaton A with k states.

If $\mathcal{L}(A)$ is infinite,

then $\exists w \in \mathcal{L}(A), |w| \geq k$.

Therefore, when accepting w, A goes through some state q at least twice.

That means that there is a loop $q \stackrel{w_{i:j}}{\to} q$.

Repeating the loop any number of times (even 0) always produces a word $(w_{1:i-1} w_{i:i}^n w_{i+1:|w|})$ in $\mathcal{L}(A)$.

Pumping lemma (intuition)

Take an automaton A with k states.

If $\mathcal{L}(A)$ is infinite,

then $\exists w \in \mathcal{L}(A), |w| \geq k$.

Therefore, when accepting w, A goes through some state q at least twice.

That means that there is a loop $q \stackrel{w_{i:j}}{\to} q$.

Repeating the loop any number of times (even 0) always produces a word $(w_{1:i-1} w_{i:i}^n w_{i+1:|w|})$ in $\mathcal{L}(A)$.

$$\mathcal{L}(A)$$
.

Pumping lemma (definition)

Pumping Lemma

Let L be a regular language.

 $\exists k \in \mathbb{N}$ such that |w| > k,

 $\exists x, u, y \text{ such that } w = xuy \text{ and that }$

- 1. |u| > 1;
- 2. |xu| < k;
- 3. $\forall n \in \mathbb{N}, xu^n y \in L$.
- \rightarrow "L has the pumping property."

Is NL regular? Pumping lemma (example I)

 a^*bc (i.e. $\{a^nbc \mid n \in \mathbb{N}\}$) is regular (there is a DFA). So, it must have the pumping property.

It happens that k = 3 works.

For example, $w = abc \in L$ is long enough and can be decomposed:

$$\frac{\epsilon}{x}$$
 $\frac{a}{u}$ $\frac{b}{y}$

- 1. $|u| \geq 1$ (u = a);
- 2. $|xu| \le k \ (xu = a);$
- 3. $\forall n \in \mathbb{N}$, $xu^n y$ (i.e. $a^n bc$) belongs to the language.

Pumping lemma (consequences)

To prove that *L* is regular provide a DFA; not regular show that the pumping property is not satisfied.

Pumping lemma (example II)

Let's show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

- ▶ Consider any $k \in \mathbb{N}$.
- ► Consider $w = a^k b^k \in L$ ($|w| \ge k$).
- ▶ If w = xuy with $|u| \ge 1$ and $|xu| \le k$, then u contains no b.
- ▶ But then, $xu^0y = xy \notin L$ (strictly less as than bs).
- ▶ So no $k \in \mathbb{N}$ works; L does not have the pumping property.

A similar reasoning applies to $\{xu^nyv^nz \mid x,y,z,u,v \in \Sigma^*\}$.

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Regular expressions

It is common to use the 3 rational operations:

- ► union
- ▶ product
- ► Kleene star

to characterize certain languages...

Regular expressions

It is common to use the 3 rational operations:

- ▶ union
- ► product
- ► Kleene star

to characterize certain languages...

$$(\{a\} \cup \{b\})^*.\{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$$
 (simplified notation $(a|b)^*c$ — regular expressions)

Regular expressions

It is common to use the 3 rational operations:

- ▶ union
- **▶** product
- ► Kleene star

to characterize certain languages...

$$(\{a\} \cup \{b\})^*.\{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$$

(simplified notation $(a|b)^*c$ — regular expressions)

... but not all languages can be thus characterized.

Def. 11 (Rational Language)

A rational language on Σ is a subset of Σ^* inductively defined thus:

- \blacktriangleright \emptyset and $\{\varepsilon\}$ are rational languages;
- ▶ for all $a \in X$, the singleton $\{a\}$ is a rational language;
- ▶ for all g and h rational, the sets $g \cup h$, g.h and g^* are rational languages.

Results: expressivity

- ► Any finite langage is regular
- $ightharpoonup a^n b^m$ is regular
- $ightharpoonup a^n b^n$ is not regular
- ww^R is not regular (R : reverse word)

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- $\Rightarrow\,$ A computation on an automaton always stops.

- The "word problem" $w \in L(A)$ is decidable.
- $\Rightarrow\,$ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.

- The "word problem" $w \in L(A)$ is decidable.
- $\Rightarrow\,$ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.

- The "word problem" $w \in L(A)$ is decidable.
- $\,\Rightarrow\,$ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.
 - The "equivalence problem" $L(A) \stackrel{?}{=} L(A')$ is decidable.
- \Rightarrow it boils down to answering the question: $\left(L(\mathcal{A}) \cap \overline{L(\mathcal{A}')}\right) \cup \left(L(\mathcal{A}') \cap \overline{L(\mathcal{A})}\right) = \emptyset$

À quoi ça sert?

Why would you want to define (formally) a language?

- ▶ to formulate a request to a search engine (mang.*)
- ▶ to associate actions to (classes of) words (e.g., transducers)
 - formal languages (math. expressions, programming languages...)
 - ► artificial (interface) languages
 - ► (subpart of) natural languages

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Definition

- 3 possible definitions
 - a regular language can be defined by rational/regular expressions
 - 2. a regular language can be recognized by a finite automaton
 - 3. a regular language can be generated by a regular grammar

Overview

Formal Languages

Regular Languages

Formal Grammars
Definition
Language classes

Formal complexity of Natural Languages

Formal grammar

Def. 12 ((Formal) Grammar)

A formal grammar is defined by $\langle \Sigma, N, S, P \rangle$ where

- \triangleright Σ is an alphabet
- ► *N* is a disjoint alphabet (non-terminal vocabulary)
- $ightharpoonup S \in V$ is a distinguished element of N, called the axiom
- ▶ P is a set of « production rules », namely a subset of the cartesian product $(\Sigma \cup N)^*N(\Sigma \cup N)^* \times (\Sigma \cup N)^*$.

$$\langle \Sigma, N, \mathcal{S}, P \rangle$$

$$\mathcal{G}_0 = \left\langle \right.$$

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \bigg\langle \{ \textit{joe}, \textit{sam}, \textit{sleeps} \},$$

$$\langle \Sigma, N, S, P \rangle$$

$$\mathcal{G}_0 = \left\langle \{ \textit{joe}, \textit{sam}, \textit{sleeps} \}, \{\textit{N}, \textit{V}, \textit{S} \}, \right.$$

$$\langle \Sigma, N, S, P \rangle$$

$$G_0 = \left\langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \{\textit{N}, \textit{V}, \textit{S}\}, \textit{S}, \right.$$

$$\langle \Sigma, N, S, P \rangle$$
 $\mathcal{G}_0 = \left\langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \{N, V, S\}, S, \left\{ egin{array}{l} (\textit{N}, \textit{joe}) \\ (\textit{N}, \textit{sam}) \\ (\textit{V}, \textit{sleeps}) \\ (\textit{S}, N, V) \end{array} \right\} \right\rangle$

$$\langle \Sigma, N, S, P \rangle$$
 $\mathcal{G}_0 = \left\langle \{\textit{joe}, \textit{sam}, \textit{sleeps}\}, \{N, V, S\}, S, \left\{egin{array}{l} N
ightarrow \textit{joe} \\ N
ightarrow \textit{sam} \\ V
ightarrow \textit{sleeps} \\ S
ightarrow N V \end{array}
ight\}
ight\}$

Examples (cont'd)

$$\mathcal{G}_1 = \left\langle \{jean, dort\}, \{Np, SN, SV, V, S\}, S, \left\{egin{array}{l} S
ightarrow SN
ightarrow Np \ SV
ightarrow V \ Np
ightarrow jean \ V
ightarrow dort \end{array}
ight\}
ight
angle$$

Notation

$$G_3: E \longrightarrow E + E$$

$$\mid E \times E$$

$$\mid (E)$$

$$\mid F$$

$$F \longrightarrow 0|1|2|3|4|5|6|7|8|9$$

Notation

Notation

$$\mathcal{G}_{3}: E \longrightarrow E + E \\
| E \times E \\
| (E) \\
| F \\
F \longrightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

$$\mathcal{G}_{3} = \langle \{+, \times, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{E, F\}, E, \{...\} \rangle$$

 $G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$

Immediate Derivation

Def. 13 (Immediate derivation)

Let $\mathcal{G} = \langle X, V, S, P \rangle$ a grammar, $(f, g) \in (X \cup V)^*$ two "words", $r \in P$ a production rule, such that $r : A \longrightarrow u \ (u \in (X \cup V)^*)$.

- f derives into g (immediate derivation) with the rule r (noted $f \stackrel{r}{\longrightarrow} g$) iff $\exists v, w \text{ s.t. } f = vAw \text{ and } g = vuw$
- f derives into g (immediate derivation) in the grammar \mathcal{G} (noted $f \xrightarrow{\mathcal{G}} g$) iff $\exists r \in P \text{ s.t. } f \xrightarrow{r} g$.

An example with \mathcal{G}_0 :

N V joe N

Derivation

```
Def. 14 (Derivation)
f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or}
\exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f
f_n = g
\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i
```

 $N \ V \ joe \ N \longrightarrow sam \ V \ joe \ N$

Derivation

Def. 14 (Derivation) $f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f \\ f_n = g \\ \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i$ An example with \mathcal{G}_0 :

Derivation

```
Def. 14 (Derivation) f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f \\ f_n = g \\ \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i  An example with \mathcal{G}_0:
```

 $N \ V \ \text{joe} \ N \longrightarrow \text{sam} \ V \ \text{joe} \ \text{ioe} \ N \longrightarrow \text{sam} \ V \ \text{joe} \ \text{joe}$

or

Derivation

```
Def. 14 (Derivation)
f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or}
\exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f
f_n = g
\forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i
An example with \mathcal{G}_0:
N \text{ $V$ joe $N$} \longrightarrow \text{sam $V$ joe joe} \qquad \text{or}
\text{sam $V$ joe sam} \qquad \text{or}
```

Derivation

```
Def. 14 (Derivation) f \xrightarrow{\mathcal{G}*} g \text{ if } f = g \qquad \text{or} \\ \exists f_0, f_1, f_2, ..., f_n \text{ s.t. } f_0 = f \\ f_n = g \\ \forall i \in [1, n] : f_{i-1} \xrightarrow{\mathcal{G}} f_i An example with \mathcal{G}_0: N \ V \text{ joe } N \longrightarrow sam \ V \text{ joe } N \longrightarrow sam \ V \text{ joe joe} \qquad \text{or} \\ sam \ V \text{ joe sam} \qquad \text{or} \\ sam \ sleeps \text{ joe } N \qquad \text{or}
```

. . .

$$E \times E$$

$$E \times E \longrightarrow F \times E$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E)$$

$$G_3: E \longrightarrow E + E$$
 $| E \times E$
 $| (E)$
 $| F \longrightarrow 0|1|2|3|4|5|6|7|8|9$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E)$$

```
Formal Languages and Linguistics

Formal Grammars

Definition
```

$$\mathcal{G}_3: E \longrightarrow E + E$$

$$\mid E \times E$$

$$\mid (E)$$

$$\mid F$$

$$F \longrightarrow 0|1|2|3|4|5|6|7|8|9$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F)$$

```
Formal Languages and Linguistics

Formal Grammars

Definition
```

$$\begin{array}{cccc} \mathcal{G}_3: & E & \longrightarrow & E+E \\ & | & E\times E \\ & | & (E) \\ & | & F \\ & F & \longrightarrow & 0|1|2|3|4|5|6|7|8|9 \end{array}$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F) \longrightarrow 3 \times (E$$

```
Formal Languages and Linguistics

Formal Grammars

Definition
```

$$\mathcal{G}_{3}: E \longrightarrow E + E$$

$$\mid E \times E$$

$$\mid (E)$$

$$\mid F$$

$$F \longrightarrow 0|1|2|3|4|5|6|7|8|9$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4)$$

```
Formal Languages and Linguistics

Formal Grammars

Definition
```

$$\mathcal{G}_3: E \longrightarrow E + E \\ | E \times E \\ | (E) \\ | F \\ F \longrightarrow 0|1|2|3|4|5|6|7|8|9$$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4)$$

```
Formal Languages and Linguistics

Formal Grammars

Definition
```

$$\mathcal{G}_3: E \longrightarrow E + E$$
 $| E \times E$
 $| (E)$
 $| F$
 $| F \longrightarrow 0|1|2|3|4|5|6|7|8|9$

$$E \times E \longrightarrow F \times E \longrightarrow 3 \times E \longrightarrow 3 \times (E) \longrightarrow 3 \times (E+E) \longrightarrow 3 \times (E+F) \longrightarrow 3 \times (E+4) \longrightarrow 3 \times (F+4) \longrightarrow 3 \times (5+4) \longrightarrow 3 \times (5$$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar $\mathcal G$ is the set of words of Σ^*

derived from the axiom.
$$L_G = L_G(S)$$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_G = L_G(S)$$

For instance $() \in L_{\mathcal{G}_2}$:

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance $() \in L_{\mathcal{G}_2}: S \to (S)S$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance $() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_G = L_G(S)$$

For instance $() \in L_{G_2}: S \to (S)S \to ()S \to ()$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}_*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_G = L_G(S)$$

For instance
$$() \in L_{G_2}: S \to (S)S \to ()S \to ()$$
 as well as $((())), ()()(), ((()()()))...$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_G = L_G(S)$$

For instance
$$() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S \to ()$$

as well as ((())), ()(), ((()()))...

but $)()(\not\in L_{\mathcal{G}_2}$, even though the following is a licit derivation :

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance
$$() \in L_{\mathcal{G}_2} : S \to (S)S \to ()S \to ()$$

as well as ((())), ()()(), ((()()()))...

but ()() ($\not\in L_{\mathcal{G}_2}$, even though the following is a licit derivation :

$$)S(\rightarrow$$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.
 $L_G(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}^*} g\}$

 $Lg(I) - \{g \in X \mid I \longrightarrow g\}$

derived from the axiom.

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^*

$$L_G = L_G(S)$$

For instance $() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S \to ()$

as well as ((())), ()(), ((()()))...

but)()($\not\in L_{\mathcal{G}_2}$, even though the following is a licit derivation :

$$)S(\rightarrow)(S)S(\rightarrow$$

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}_*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance
$$() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S \to ()$$

as well as ((())), ()(), ((()()))...

but $)()(\not\in L_{\mathcal{G}_2}$, even though the following is a licit derivation :

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.

$$L_{\mathcal{G}}(f) = \{ g \in X^*/f \xrightarrow{\mathcal{G}^*} g \}$$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of Σ^* derived from the axiom.

$$L_{\mathcal{G}} = L_{\mathcal{G}}(S)$$

For instance
$$() \in L_{\mathcal{G}_2}: S \to (S)S \to ()S \to ()$$

as well as ((())), ()(), ((()()))... but (()) $\notin L_{G_2}$, even though the following is a licit derivation :

Def. 15 (Language engendered by a word)

Let
$$f \in (\Sigma \cup N)^*$$
.
 $L_G(f) = \{g \in X^*/f \xrightarrow{\mathcal{G}^*} g\}$

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar \mathcal{G} is the set of words of Σ^* derived from the axiom.

$$L_G = L_G(S)$$

For instance $() \in L_{G_2}: S \to (S)S \to ()S \to ()$ as well as ((())), ()(), ((()()))...

but $()() \notin L_{G_2}$, even though the following is a licit derivation :

$$(S(S))(S(S)(S(S))(S(S))(S(S))(S(S))(S(S)(S(S))(S(S))(S(S))(S(S))(S(S))(S(S))(S(S))(S(S))(S(S))(S(S))$$

for there is no way to arrive at S(starting with S(

Example

$$G_4 = E \rightarrow E + T \mid T, T \rightarrow T \times F \mid F, F \rightarrow (E) \mid a$$

$$a + a$$
, $a + (a \times a)$, ...

Proto-word

Def. 17 (Proto-word)

A proto-word (or proto-sentence) is a word on $(\Sigma \cup N)^*N(\Sigma \cup N)^*$ (that is, a word containing at least one letter of N) produced by a derivation from the axiom.

A given word may have several derivations: $E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 5 + F$

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

$$E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$$

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

$$E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$$

... but if the grammar is not ambiguous, there is only one **left** derivation:

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

$$E \rightarrow E + E \rightarrow E + F \rightarrow E + 4 \rightarrow F + 4 \rightarrow 3 + 4$$

... but if the grammar is not ambiguous, there is only one **left** derivation:

$$\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$$

A given word may have several derivations:

$$E \rightarrow E + E \rightarrow F + E \rightarrow F + F \rightarrow 3 + F \rightarrow 3 + 4$$

 $F \rightarrow F + F \rightarrow F + F \rightarrow F + 4 \rightarrow F + 4 \rightarrow 3 + 4$

... but if the grammar is not ambiguous, there is only one left

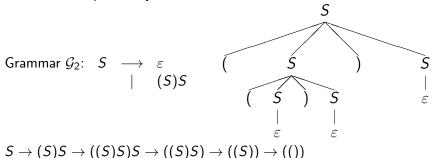
derivation:

$$\underline{E} \rightarrow \underline{E} + E \rightarrow \underline{F} + E \rightarrow 3 + \underline{E} \rightarrow 3 + \underline{F} \rightarrow 3 + 4$$

parsing: trying to find the/a left derivation (resp. right)

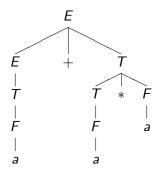
Derivation tree

For context-free languages, there is a way to represent the set of equivalent derivations, via a derivation tree which shows all the derivation independently of their order.



Structural analysis

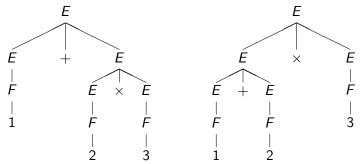
Syntactic trees are precious to give access to the semantics



Ambiguity

When a grammar can assign more than one derivation tree to a word $w \in L(G)$ (or more than one left derivation), the grammar is ambiguous.

For instance, \mathcal{G}_3 is ambiguous, since it can assign the two following trees to $1+2\times 3$:



About ambiguity

- ► Ambiguity is not desirable for the semantics
- ► Useful artificial languages are rarely ambiguous
- ► There are context-free languages that are intrinsequely ambiguous (1)
- ► Natural languages are notoriously ambiguous...
- $(1) \qquad \{a^nba^mba^pba^q|(n\geqslant q\wedge m\geqslant p)\vee (n\geqslant m\wedge p\geqslant q)\}$

Comparison of grammars

- ► different languages generated ⇒ different grammars
- ▶ same language generated by \mathcal{G} and \mathcal{G}' :

⇒ same weak generative power

▶ same language generated by \mathcal{G} and \mathcal{G}' , and same structural decomposition :

 \Rightarrow same strong generative power

Formal Languages and Linguistics

Formal complexity of Natural Languages

Are NL context-sensitive?

References I

Bar-Hillel, Yehoshua, Perles, Micha, & Shamir, Eliahu. 1961. On formal properties of simple phrase structure grammars. STUF-Language Typology and Universals, 14(1-4), 143-172.

Chomsky, Noam. 1957. Syntactic Structures. Den Haag: Mouton & Co.

Chomsky, Noam. 1995. The Minimalist Program. Vol. 28. Cambridge, Mass.: MIT Press.

Gazdar, Gerald, & Pullum, Geoffrey K. 1985 (May). Computationally Relevant Properties of Natural Languages and Their Grammars. Tech. rept. Center for the Study of Language and Information, Leland Stanford Junior University.

Gibson, Edward, & Thomas, James. 1997. The Complexity of Nested Structures in English: Evidence for the Syntactic Prediction Locality Theory of Linguistic Complexity. *Unpublished manuscript, Massachusetts Institute of Technology.*

Joshi, Aravind K. 1985. Tree Adjoining Grammars: How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions? Tech. rept. Department of Computer and Information Science, University of Pennsylvania.

Science, University or Pennsylvania.

Langendoen, D Terence, & Postal, Paul Martin. 1984. The vastness of natural languages. Basil Blackwell Oxford.

Mannell, Robert. 1999. *Infinite number of sentences*. part of a set of class notes on the Internet. http://clas.mo.edu.au/speech/infinite sentences/.

Schieber, Stuart M. 1985. Evidence against the Context-Freeness of Natural Language. *Linguistics and Philosophy*, 8(3), 333–343.

Stabler, Edward P. 2011. Computational perspectives on minimalism. Oxford handbook of linguistic minimalism. 617–643.

Steedman, Mark, et al. . 2012 (June). Combinatory Categorial Grammars for Robust Natural Language Processing. Slides for NASSLLI course

http://homepages.inf.ed.ac.uk/steedman/papers/ccg/nasslli12.pdf.

Vijay-Shanker, K., & Weir, David J. 1994. The Equivalence of Four Extensions of Context-Free Grammars. *Mathematical Systems Theory*, 27, 511-546.

