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Formal definition

Def. 9 (Finite deterministic automaton (FDA))

A finite state deterministic automaton A is defined by :
A= <Q727CI07F75>

Q is a finite set of states

Y is an alphabet

qo is a distinguished state, the initial state,

F is a subset of Q, whose members are called
final /terminal states

0 is a mapping fonction from @ x X to Q.
Notation d(q,a) = r.
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Example

Let us consider the (finite) language {aa, ab, abb, acba, accb}.

The following automaton recognizes this langage: (Q, X, qo, F,9),
avec Q ={1,2,3,4,5,6,7}, X ={a,b,c}, qo =1, F ={3,4}, and
J is thus defined:

§: (La)—2 ® 5 alb|c
(22) 3 b 12
b4 =0+~ © O > 3125
(2.c) = 5 e @y 3
(4,b) — 3
(5,b) > 6 <4 3
(5,¢) 7 5 6|7
(6,a) — 3 6|3
(7,b) = 3 7 3
Seeoeens it
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Recognition

Recognition is defined as the existence of a sequence of states
defined in the following way. Such a sequence is called a path in
the automaton.

Def. 10 (Recognition)
A word ajay...a, is recognized/accepted by an automaton iff
there exists a sequence ko, ki, ..., k, of states such that:

ko = qo

kn € F

Vi e []., n], 5(/(,'_1, a,-) = k;
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Exercices

Let ¥ = {a, b, c}. Give deterministic finite state automata that
accept the following languages:

1.
2.

NGO AW

The set of words with an even length.

The set of words where the number of occurrences of b is
divisible by 3.

The set of words ending with a b.

The set of words not ending with a b.

The set of words non empty not ending with a b.

The set of words comprising at least a b.

The set of words comprising at most a b.

The set of words comprising exactly one b.
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Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is
not excluded however that there be several paths for one word: in
that case, the automaton is non deterministic.

What are the sources of non determinism?

> (5(3, 51) = {52, 53}

» “spontaneous transition” = e-transition
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Equivalence theorems

For any non-deterministic automaton, it is possible to design a
complete deterministic automaton that recognizes the same
language.

Proofs: algorithms (constructive proofs)

First “remove” e-transitions, then “remove” multiple transitions.
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Closure (1)

Regular languages are closed under various operations: if the
languages L and L’ are regular, so are:
» L UL (union); L.L" (product); L* (Kleene star)
(rational operations)
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Union of regular languages: an example
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Closure (2)

Regular languages are closed under various operations: if the
languages L and L’ are regular, so are:

» L UL (union); L.L" (product); L* (Kleene star)
(rational operations)
— for every rational expression describing a language , there is
a FSA that recognizes L
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Closure (2)

Regular languages are closed under various operations: if the
languages L and L’ are regular, so are:

» L UL (union); L.L" (product); L* (Kleene star)
(rational operations)
— for every rational expression describing a language , there is
a FSA that recognizes L and vice-versa
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Closure (2)

Regular languages are closed under various operations: if the
languages L and L’ are regular, so are:
» L UL (union); L.L" (product); L* (Kleene star)
(rational operations)
— for every rational expression describing a language , there is

a FSA that recognizes L and vice-versa
» LN L (intersection); L (complement)
> ...
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Intersection of regular languages

Algorithmic proof
Deterministic complete automata
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Complement of a regular language

Deterministic complete automata

completed complemented
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Pumping lemma (intuition)

Take an automaton A with k states.

If L(A) is infinite,

then 3w € L(A), |w| > k.

Therefore, when accepting w, A goes through some state g at least
twice. y

That means that there is a loop ¢ i qg.

Repeating the loop any number of times (even 0) always produces
a word (lei—l W,':jn Wj+1:\w|) in ﬁ(A)
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Pumping lemma (intuition)

Take an automaton A with k states.

If L(A) is infinite,

then 3w € L(A), |w| > k.

Therefore, when accepting w, A goes through some state g at least
twice.

That means that there is a loop g g qg.

Repeating the loop any number of times (even 0) always produces

a word (Wl:i—l W,';J'n Wj+1:\w|) in ,C(A)
sfieQePethe
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Pumping lemma (definition)

Pumping Lemma

Let L be a regular language.

Jk € N such that

Vw € L such that |w| > k,

3x, u, y such that w = xuy and that
1. Jul > 1,
2. |xul < k;
3. Vne N, xu"y € L.

— "L has the pumping property.”
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Is NL regular? Pumping lemma (example |)

a*bc (i.e. {a"bc | n € N}) is regular (there is a DFA).
So, it must have the pumping property.

It happens that k = 3 works.
For example, w = abc € L is long enough and can be decomposed:
€ a b ¢

X u y

1 |u>1(u=a);
2. |xu| < k (xu = a);
3. VneN, xu"y (i.e. a"bc) belongs to the language.

Sorbonne
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Pumping lemma (consequences)

regular = pumping property satisfied
pumping property NOT satisfied = NOT regular
pumping property satisfied 2 regular

To prove that L is
regular provide a DFA;

not regular show that the pumping property is not satisfied.
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Pumping lemma (example Il)

Let's show that L = {a"b" | n € N} is not regular.
» Consider any k € N.
» Consider w = akbk € L (jw| > k).
» If w = xuy with |u| > 1 and |xu| < k, then u contains no b.
» But then, xu®y = xy ¢ L (strictly less as than bs).
» So no k € N works; L does not have the pumping property.

A similar reasoning applies to {xu"yw"z | x,y,z,u,v € ¥*}.
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L Regular expressions

Regular expressions

It is common to use the 3 rational operations:
P union
» product
» Kleene star

to characterize certain languages...
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L Regular expressions

Regular expressions

It is common to use the 3 rational operations:
P union
» product
» Kleene star

to characterize certain languages...

({a} U{b})*{c} = {c,ac,abc, bc, ..., baabaac,...}
(simplified notation (a|b)*c — regular expressions)
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Regular expressions

It is common to use the 3 rational operations:

P union
» product
» Kleene star
to characterize certain languages...

({a} U{b})*{c} = {c,ac,abc, bc, ..., baabaac,...}
(simplified notation (a|b)*c — regular expressions)

... but not all languages can be thus characterized.
Sorbonne rry
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L Regular Languages

L Regular expressions

Def. 11 (Rational Language)

A rational language on X is a subset of ©* inductively defined thus:
» () and {e} are rational languages ;
» for all a € X, the singleton {a} is a rational language ;

» for all g and h rational, the sets g U h, g.h and g* are rational
languages.
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Results: expressivity

» Any finite langage is regular
> a"b™ is regular
> 2"b" is not regular

R

» wwh is not regular (R : reverse word)
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Decidable problems

?
e The “word problem” w € L(A) is decidable.
= A computation on an automaton always stops.
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L Regular expressions

Decidable problems

?
e The “word problem” w € L(A) is decidable.
= A computation on an automaton always stops.

e The “emptiness problem” L(.A) L § is decidable.
= It's enough to test all possible words of length < k, where k is the
number of states.
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L Regular Languages

LRegular expressions

Decidable problems

.
=

?
The “word problem” w € L(.A) is decidable.
A computation on an automaton always stops.

The “emptiness problem” L(.A) L § is decidable.
It's enough to test all possible words of length < k, where k is the
number of states.

?
The “finiteness problem” L(.A) is finite is decidable.

Test all possible words whose length is between k and 2k. If there
exists u s.t. k < |u| < 2k and u € L(A), then L(A) is infinite.
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LRegular Languages

LRegular expressions

Decidable problems

?
e The “word problem” w € L(.A) is decidable.
= A computation on an automaton always stops.

e The “emptiness problem” L(.A) L 0 is decidable.
= It's enough to test all possible words of length < k, where k is the
number of states.

?
e The “finiteness problem” L(.A) is finite is decidable.
= Test all possible words whose length is between k and 2k. If there
exists u s.t. k < |u| < 2k and u € L(A), then L(A) is infinite.

e The “equivalence problem” L(A) < L(A’) is decidable.
= it boils down to answering the question:

(L(A) N m) U (L(AI) N m) =0 Sorbonne

Nouvelle
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A quoi ca sert?

Why would you want to define (formally) a language?

» to formulate a request to a search engine (mang. *)
» to associate actions to (classes of) words (e.g., transducers)
» formal languages (math. expressions, programming
languages...)
» artificial (interface) languages
» (subpart of) natural languages
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Definition

3 possible definitions

1. a regular language can be defined by rational /regular
expressions

2. a regular language can be recognized by a finite automaton

3. a regular language can be generated by a regular grammar

Sorbonne
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Formal grammar

Def. 12 ((Formal) Grammar)
A formal grammar is defined by (X, N, S, P) where

» 3 is an alphabet

» N is a disjoint alphabet (non-terminal vocabulary)

» S € Vs a distinguished element of N, called the axiom

» P is a set of « production rules », namely a subset of the
cartesian product (X U N)*N(X U N)* x (XU N)*.

Sorbonne rry
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Examples

<z’ N’ 57 P)
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<z’ N’ 57 P)

Go = ( {Jjoe, sam, sleeps},
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Examples

<z’ N’ 57 P)

Go = ( {joe, sam, sleeps},{N,V, S},
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(L, N, S5, P)

Go = ( {joe, sam, sleeps},{N,V,S},S,
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I—Definition |
Examples
(L,N,S,P)
(N, joe)
Go = ( { leeps), {N.V.5}.5. ¢ (sam) )y
0 = ( Yjoe, sam, sleeps}, {N, V,5},5, 3 (\/" (leeps)
(S,N V)
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[ Formal Grammars

I—Definition |
Examples
<za N’ S’ P>
N — joe
. N — sam
Go = <{Joe, sam, sleeps}, {N, V. 5}, 5, ¢\, sleeps > J
SNV

Sorbonne
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Examples (cont'd)

S— SN SV
SN — Np

G = <{jean, dort},{Np,SN,SV,V 5},S,¢ SV =V >}
Np — jean
V — dort

G = ({(,)}: {5}, 5. {5 —¢€[(5)S})

Sorbonne rry
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[ Formal Grammars

|—Definition |
Notation
G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8|9
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Notation

Gs: E — E+E
| EXE
I (E)
| F
F — 0]1|2|3|4]5|6|7]8]|9
g3 = <{+7 X7 (7 )707 1’2’ 37 47 57 6’ 77 87 9}’ {E7 F}’ E? {' * '})
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Notation

Gs: E — E+E
| EXE
| (E)
| F
F — 0]1|2|3]|4|5|6|7|8]9
Gz = ({+,%,(,),0,1,2,3,4,5,6,7,8,9}, {E,F},E, {...})

Gi=E—>E+T|T,T>TxF|F,F—(E)|a
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Immediate Derivation

Def. 13 (Immediate derivation)

Let G = (X, V,S,P) a grammar, (f,g) € (XU V)* two “words",

r € P a production rule, such that r: A — u (u € (X U V)*).
e f derives into g (immediate derivation) with the rule r

(noted f — g) iff
dv,w st f=vAw and g = vuw

e f derives into g (immediate derivation) in the grammar G

(noted f 25 g) iff
JrePst f g

Sorbonne
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Derivation

Def. 14 (Derivation)
% gif f=g or
3o A foy oo st fo = F
fo= g
Vieln]:fiiy -2 f
An example with Go:
N V joe N
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Derivation

Def. 14 (Derivation)
% gif f=g or
Uy, fis foy s fo st fo=F
fo= g
Vieln]:fiiy -2 f
An example with Go:
NV joe N — sam V joe N

Sorbonne
Nouvelle

60/110



Formal Languages and Linguistics
LFormaI Grammars
L Definition

Derivation

Def. 14 (Derivation)
F o gif f=¢g or
Iy, A, b, ..., fast. fo=F
fn =8
Vieln]:fiiy -2 f
An example with Go:
NV joe N— sam V joe N — sam V joe joe or
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L Definition

Derivation

Def. 14 (Derivation)
F o gif f=¢g or
3o A foy oo st fo = F
fo= g
Vieln]:fiiy -2 f
An example with Go:

NV joe N— sam V joe N — sam V joe joe or
sam V joe sam or

Sorbonne
Nouvelle

60/110



Formal Languages and Linguistics
LFormaI Grammars
L Definition

Derivation

Def. 14 (Derivation)
% gif f=g or
Iy, A, oy fysit. o =F
fo= g
Vieln]:fiiy -2 f
An example with Go:
NV joe N— sam V joe N — sam V joe joe or
sam V joe sam or
sam sleeps joe N or
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:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

E x E
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

ExE — FxE
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:
ExXE—FxE—3xE
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:
EXE—FxE—3xE—3x(E)
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXxE—3xE-—3x(E)—3x(E+E)
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXE—3xE-—3x(E) —3x(E+E)—
3x (E+F)
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXE—3xE-—3x(E) —3x(E+E)—
3x (E+F)— 3x (E+4)
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXE—3xE-—3x(E) —3x(E+E)—
3Xx(E+F) —3x(E+4) — 3x(F+4)
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L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXE—3xE-—3x(E) —3x(E+E)—
3Xx(E4+F) —3x(E+4) —3x(F+4) —3x(5+4)
Sorbonne rry
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LFormaI Grammars
L Definition
:

Endpoint of a derivation

G3: E — E+E
| EXE
| (E)
| F
F — 0|1|2|3|4|5|6|7|8]9

An example with Gs:

EXE—FXE—3xE-—3x(E) —3x(E+E)—
3X(E4+F)—3x(E+4) —3x(F+4) —3x(5+4) —
Sorbonne rry
Nouvelle rrr
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Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.
Lg = Lg(5)

Sorbonne
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LFormaI Grammars
L Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,:
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L Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S — (S)S
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LFormaI Grammars
L Definition

Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S— (5)S = ()S
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Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()
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Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.

Lo(f) = {g e X*/f T g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S — (5)S — ()5 = ()

as well as ((())), )O0), ((OO0))--
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Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()

as well as ((())), )0O0), ((O0O0)). -

but )()( & Lg,, even though the following is a licit derivation :
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Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()

as well as ((())), )0O0), ((O0O0)). -
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Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()

as well as ((())), )0O0), ((O0O0)). -

but )()( & Lg,, even though the following is a licit derivation :
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Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.

Lo(f) = {g e X*/f T g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()

as well as ((())), OO0, ((OO0))--

but )()( € Lg,, even though the followmg is a licit derivation :

)S(=)(5)S(=)0S( =)0l
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Engendered language

Def. 15 (Language engendered by a word)
Let f € (X U N)*.
Lo(f) = {g € X*/f < g}

Def. 16 (Language engendered by a grammar)

The language engendered by a grammar G is the set of words of X*
derived from the axiom.

Lg = Lg(5)

For instance () € Lg,: S—=(S)S—=()S— ()

as well as ((())), )0O0), ((O0O0)). -

but )()( & Lg,, even though the following is a licit derivation :

)S(=)(5)S(=)0S( =)0l

for there is no way to arrive at )S( starting with S. Sorbonne ;1
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Example

Gi=E—E+T|T,T>TxF|F,F—(E)|a

a+a a+(axa), ..

Sorbonne
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Proto-word

Def. 17 (Proto-word)

A proto-word (or proto-sentence) is a word on (X U N)*N(X U N)*
(that is, a word containing at least one letter of ) produced by a
derivation from the axiom.

E—-E4+T—-E4+TxF>T+TxF—>T+FxF—
T+asxF—F+axF—at+axF— gi/adKd

Sorbonne
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Multiple derivations

A given word may have several derivations:
E—-E4+E—->F4+E—->F+F—>3+F—3+4

Sorbonne
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Multiple derivations

A given word may have several derivations:
E—-E4+E—->F4+E—->F+F—>3+F—3+4
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Multiple derivations

A given word may have several derivations:
E—-E4+E—->F4+E—->F+F—>3+F—3+4
E—-E+E—-E+F—>E+4—>F+4—=>3+4

... but if the grammar is not ambiguous, there is only one left
derivation:
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Multiple derivations

A given word may have several derivations:
E—-E+E—-F+E—->F+F—>34+F—3+4
E—-E+E—~E4+F—->E+4—>F+4—-3+14

... but if the grammar is not ambiguous, there is only one left
derivation:
E-E+E—-F+E—-34+E—->3+F—>3+4
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Multiple derivations

A given word may have several derivations:
E—-E+E—-F+E—->F+F—>34+F—3+4
E—-E+E—~E4+F—->E+4—>F+4—-3+14

... but if the grammar is not ambiguous, there is only one left
derivation:
E-E+E—-F+E—-34+E—->3+F—>3+4

parsing: trying to find the/a left derivation (resp. right)
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Derivation tree

For context-free languages, there is a way to represent the set of
equivalent derivations, via a derivation tree which shows all the
derivation independantly of their order.

S

Grammar Go: S — ¢ (/S\)S
I (8)S N

(S ) S 5
;e

S =(5)5 = ((5)5)S = ((5)5) = ((5)) = (0)

Sorbonne rry
Nouvelle rrr

66 /110



Formal Languages and Linguistics
|—Formal Grammars
L Definition

Structural analysis

Syntactic trees are precious to give access to the semantics

E
E + T
| S
T T x F
| | |
F F a
| |
a a
Sorbonne rry
Nouvelle rrv
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Ambiguity

When a grammar can assign more than one derivation tree to a

word w € L(G) (or more than one left derivation), the grammar is
ambiguous.

For instance, G3 is ambiguous, since it can assign the two follwing
treesto 1 +2 x 3:

E E
E + E E X E
| T T |
F E x E E + E F
| | | | | |
1 F F F F 3
£ :‘3 J_ £ Sorbonne

ey
Nouvelle 777
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About ambiguity

» Ambiguity is not desirable for the semantics
» Useful artificial languages are rarely ambiguous

» There are context-free languages that are intrinsequely
ambiguous (1)

» Natural languages are notoriously ambiguous...

(1)  {a"bambaPbal|(n=qgAm=p)V(n=mAp=q)}

Sorbonne
Nouvelle
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Comparison of grammars

» different languages generated = different grammars

» same language generated by G and G’:
= same weak generative power

» same language generated by G and G’,

and same structural decomposition :
= same strong generative power

Sorbonne
Nouvelle
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LFormal complexity of Natural Languages

L Are NL context-sensitive?
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