Formal Languages and Linguistics

Pascal Amsili

Sorbonne Nouvelle, Lattice (CNRS/ENS-PSL/USN)

PSL Master's degree in Cognitive Science, February 2025

Overview

Formal Languages

Basic concepts

Questions

Regular Languages

Formal Grammars

Formal complexity of Natural Languages

Back to "Natural" Languages

English as a formal language:

alphabet: morphemes (often simplified to words —depending on

your view on flexional morphology)

 \Rightarrow Finite at a time t by hypothesis

words: well formed English sentences

⇒ English sentences are all finite by hypothesis

language: English, as a set of an infinite number of well formed

combinations of "letters" from the alphabet

Good questions

Why would one consider natural language as a formal language?

- ▶ it allows to describe the language in a formal/compact/elegant way
- it allows to compare various languages (via classes of languages established by mathematicians)
- ▶ it give algorithmic tools to recognize and to analyse words of a language.

recognize u: decide whether $u \in L$ analyse u: show the internal structure of u

Final remarks

- ► We are only talking about syntax
- ► From now on, we'll mostly be looking for precise and efficient ways to **define** a language
 - ightharpoonup L = {aa, ab, ba}
 - ► L = { all the country names in English }
 - ► L = { all the inflected forms of French *manger* }
 - $L = \{a^{2^k} \text{ with } k \ge 0\}$
 - ▶ $L = \{ww \text{ with } w \in \Sigma^*\}$
 - ▶ L = $({a} \cup {b}.{c})^*$ simplified notation $(a|bc)^*$

 - ▶ L = the set of words engendered by this formal grammar

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Metaphoric definition

Formal definition

Def. 9 (Finite deterministic automaton (FDA))

A finite state deterministic automaton ${\cal A}$ is defined by :

$$\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$$

- Q is a finite set of states
- Σ is an alphabet
- q₀ is a distinguished state, the initial state,
- F is a subset of Q, whose members are called final/terminal states
- δ is a mapping **fonction** from $Q \times \Sigma$ to Q. Notation $\delta(q, a) = r$.

Example

Let us consider the (finite) language $\{aa,ab,abb,acba,accb\}$. The following automaton recognizes this language: $\langle Q, \Sigma, q_0, F, \delta \rangle$, avec $Q = \{1,2,3,4,5,6,7\}$, $\Sigma = \{a,b,c\}$, $q_0 = 1$, $F = \{3,4\}$, and δ is thus defined:

	а	b	С
$\rightarrow 1$	3		
2	3	4	5
← 3			
← 4		3	
5		6	7
6	3		
7		3	

Recognition

Recognition is defined as the existence of a sequence of states defined in the following way. Such a sequence is called a path in the automaton.

Def. 10 (Recognition)

A word $a_1a_2...a_n$ is **recognized/accepted** by an automaton iff there exists a sequence $k_0, k_1, ..., k_n$ of states such that:

$$k_0 = q_0$$

$$k_n \in F$$

$$\forall i \in [1, n], \ \delta(k_{i-1}, a_i) = k_i$$

Example

Exercices

Let $\Sigma = \{a, b, c\}$. Give deterministic finite state automata that accept the following languages:

- 1. The set of words with an even length.
- 2. The set of words where the number of occurrences of *b* is divisible by 3.
- 3. The set of words ending with a b.
- 4. The set of words not ending with a b.
- 5. The set of words non empty not ending with a b.
- 6. The set of words comprising at least a b.
- 7. The set of words comprising at most a b.
- 8. The set of words comprising exactly one b.

Answers

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Formal Grammars

Formal complexity of Natural Languages

Ways of non-determinism

A word is recognized if there exists a path in the automaton. It is not excluded however that there be several paths for one word: in that case, the automaton is non deterministic.

What are the sources of non determinism?

- $\delta(a, S_1) = \{S_2, S_3\}$
- "spontaneous transition" = ε -transition

Equivalence theorems

For any non-deterministic automaton, it is possible to design a complete deterministic automaton that recognizes the same language.

Proofs: algorithms (constructive proofs)

First "remove" ε -transitions, then "remove" multiple transitions.

Closure (1)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

```
▶ L \cup L' (union); L.L' (product); L^* (Kleene star) (rational operations)
```

Union of regular languages: an example

Rational operations

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- ► $L \cup L'$ (union); L.L' (product); L^* (Kleene star)

 (rational operations)
 - ightarrow for every rational expression describing a language , there is a FSA that recognizes $\it L$

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

```
\blacktriangleright L \cup L' (union); L.L' (product); L^* (Kleene star)
```

```
\rightarrow for every rational expression describing a language, there is
```

a FSA that recognizes L and vice-versa

(rational operations)

Closure (2)

Regular languages are closed under various operations: if the languages L and L' are regular, so are:

- ▶ $L \cup L'$ (union); L.L' (product); L^* (Kleene star)
 - (rational operations)
 - ightarrow for every rational expression describing a language , there is a FSA that recognizes L and vice-versa
- ▶ $L \cap L'$ (intersection); \overline{L} (complement)

Intersection of regular languages

Algorithmic proof
Deterministic complete automata

L_1	а	b	L_2	а	b	$L_1 \cap L_2$	а	b
$\rightarrow 1$	2	4	$\leftrightarrow 1$	2	5	ightarrow (1,1)	(2,2)	(4,5)
2	4	3	2	5	3	(2,2)	(4,5)	(3,3)
← 3	3	3	3	4	5	(4,5)	(4,5)	(4,5)
4	4	4	4	1	4	(3,3)	(3,4)	(3,5)
	•		5	5	5	(3,4)	(3,1)	(3,4)
						\leftarrow (3,1)	(3,2)	(3,4)
						(3,2)	(3,4)	(3,3)
						(3,5)	(3,5)	(3,5)

Complement of a regular language

Deterministic complete automata

Pumping lemma (intuition)

Take an automaton A with k states.

If $\mathcal{L}(A)$ is infinite,

then $\exists w \in \mathcal{L}(A), |w| \geq k$.

Therefore, when accepting w, A goes through some state q at least twice.

That means that there is a loop $q \stackrel{w_{i:j}}{\to} q$.

Repeating the loop any number of times (even 0) always produces a word $(w_{1:i-1} w_{i:i}^n w_{i+1:|w|})$ in $\mathcal{L}(A)$.

Pumping lemma (intuition)

Take an automaton A with k states.

If $\mathcal{L}(A)$ is infinite,

then $\exists w \in \mathcal{L}(A), |w| \geq k$.

Therefore, when accepting w, A goes through some state q at least twice.

That means that there is a loop $q \stackrel{w_{i:j}}{\to} q$.

Repeating the loop any number of times (even 0) always produces a word $(w_{1:i-1} w_{i:j}^n w_{i+1:|w|})$ in $\mathcal{L}(A)$.

Pumping lemma (definition)

Pumping Lemma

Let L be a regular language.

 $\exists k \in \mathbb{N}$ such that

 $\forall w \in L \text{ such that } |w| \geq k$,

 $\exists x, u, y \text{ such that } w = xuy \text{ and that }$

- 1. |u| > 1;
- 2. $|xu| \leq k$;
- 3. $\forall n \in \mathbb{N}, xu^n y \in L$.
- \rightarrow "L has the pumping property."

Is NL regular? Pumping lemma (example I)

 a^*bc (i.e. $\{a^nbc \mid n \in \mathbb{N}\}\)$ is regular (there is a DFA). So, it must have the pumping property.

It happens that k = 3 works.

For example, $w = abc \in L$ is long enough and can be decomposed:

$$\frac{\epsilon}{x}$$
 $\frac{a}{u}$ $\frac{b}{y}$

- 1. $|u| \geq 1$ (u = a);
- 2. $|xu| \le k \ (xu = a);$
- 3. $\forall n \in \mathbb{N}$, $xu^n y$ (i.e. $a^n bc$) belongs to the language.

Pumping lemma (consequences)

```
To prove that L is regular provide a DFA; not regular show that the pumping property is not satisfied.
```

Pumping lemma (example II)

Let's show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

- ▶ Consider any $k \in \mathbb{N}$.
- ▶ Consider $w = a^k b^k \in L$ ($|w| \ge k$).
- ▶ If w = xuy with $|u| \ge 1$ and $|xu| \le k$, then u contains no b.
- ▶ But then, $xu^0y = xy \notin L$ (strictly less as than bs).
- ▶ So no $k \in \mathbb{N}$ works; L does not have the pumping property.

A similar reasoning applies to $\{xu^nyv^nz \mid x, y, z, u, v \in \Sigma^*\}$.

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

$$(\{a\} \cup \{b\})^*.\{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$$
 (simplified notation $(a|b)^*c$ — regular expressions)

Regular expressions

It is common to use the 3 rational operations:

- union
- product
- Kleene star

to characterize certain languages...

$$(\{a\} \cup \{b\})^*.\{c\} = \{c, ac, abc, bc, \dots, baabaac, \dots\}$$
 (simplified notation $(a|b)^*c$ — regular expressions)

... but not all languages can be thus characterized.

Def. 11 (Rational Language)

A rational language on Σ is a subset of Σ^* inductively defined thus:

- ▶ \emptyset and $\{\varepsilon\}$ are rational languages ;
- ▶ for all $a \in X$, the singleton $\{a\}$ is a rational language;
- ▶ for all g and h rational, the sets $g \cup h$, g.h and g^* are rational languages.

Results: expressivity

- ► Any finite langage is regular
- ► aⁿb^m is regular
- $ightharpoonup a^n b^n$ is not regular
- ww^R is not regular (R : reverse word)

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- ⇒ A computation on an automaton always stops.

- The "word problem" $w \in L(A)$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.

- The "word problem" $w \in L(A)$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.

- The "word problem" $\frac{?}{w \in L(A)}$ is decidable.
- ⇒ A computation on an automaton always stops.
 - The "emptiness problem" $L(A) \stackrel{?}{=} \emptyset$ is decidable.
- \Rightarrow It's enough to test all possible words of length $\leq k$, where k is the number of states.
 - The "finiteness problem" L(A) is finite is decidable.
- \Rightarrow Test all possible words whose length is between k and 2k. If there exists u s.t. k < |u| < 2k and $u \in L(A)$, then L(A) is infinite.
 - The "equivalence problem" $L(A) \stackrel{!}{=} L(A')$ is decidable.
- \Rightarrow it boils down to answering the question: $\left(L(\mathcal{A}) \cap \overline{L(\mathcal{A}')}\right) \cup \left(L(\mathcal{A}') \cap \overline{L(\mathcal{A})}\right) = \emptyset$

À quoi ça sert?

Why would you want to define (formally) a language?

- to formulate a request to a search engine (mang.*)
- to associate actions to (classes of) words (e.g., transducers)
 - formal languages (math. expressions, programming languages...)
 - artificial (interface) languages
 - ► (subpart of) natural languages

Overview

Formal Languages

Regular Languages

Automata

Properties

Regular expressions

Definition

Formal Grammars

Formal complexity of Natural Languages

Definition

- a regular language can be defined by rational/regular expressions
- 2. a regular language can be recognized by a finite automaton
- 3. a regular language can be generated by a regular grammar

