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Class information

Lectures: Tuesdays, 4 pm - 6 pm

Tutorials: Fridays, 4 pm - 6 pm

Official website: https://www.linguist.univ-paris-diderot.fr/~amsili/Ens/FTSL.php

Moodle site: https://moodle.psl.eu/enrol/index.php?id=25347

Please, enrol if you have not done so already!

Evaluation: 4 homeworks (60 %) and 1 final exam (40 %)
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➢ The child ate the pasta with a fork
○ Did the pasta come with a fork?
○ Or did the child use a fork?

➢ John saw the man on the mountain with a telescope.
○ Was John on the mountain? Or was the man?
○ Did John had a telescope? Or did the man? Or did the mountain?
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Motivation

➢ Your brain effortlessly resolves these ambiguities using context, world 
knowledge, and probability

➢ You can understand sentences you've never heard before
➢ You can detect grammatical errors even in unfamiliar contexts

○ ‘The ideas sleeps’ → Something feels wrong



Motivation

➢ Your brain effortlessly resolves these ambiguities using context, world 
knowledge, and probability

➢ You can understand sentences you've never heard before
➢ You can detect grammatical errors even in unfamiliar contexts

○ ‘The ideas sleeps’ → Something feels wrong

1. How does your mind represent grammatical rules?
2. What makes some sequences of words ‘feel’ right or wrong?
3. Can we create mathematical models that capture these intuitions?



Motivation

Formal languages will give us precise tools to:

➢ Model how our minds process structure
➢ Bridge human language processing and computational systems
➢ Understand the mathematical limits of what patterns can be recognised
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Set theory refresher I

Set: Unordered sequence of unique elements

Empty set: ∅ or {}

Membership: 𝑥 ∈ 𝑆 ‘𝑥 is an element/member of 𝑆’

Extensional notation: {𝑥1, 𝑥2, …, 𝑥n} ‘elements 𝑥1, 𝑥2, …, 𝑥n’

Intensional notation: {𝑥 ∈ 𝑆 | 𝑃(𝑥)} ‘elements of 𝑆 that verify property 𝑃’

Inclusion: 𝐴 ⊆ 𝐵 ‘all the members of 𝐴 are also members of 𝐵’

Cardinal: |𝑆| ‘number of elements of 𝑆’



Set theory refresher II

Union: 𝐴 ∪ 𝐵 ‘all the elements of 𝐴 and 𝐵’

Intersection: 𝐴 ∩ 𝐵 ‘all the common elements of 𝐴 and 𝐵’

Complementation: 𝐴 ∖ 𝐵 ‘all the elements of 𝐴 not in 𝐵’

Power set: 𝒫(𝑆) ‘all the combinations of elements of 𝑆’

ex: 𝒫({0, 1}) = {∅, {0}, {1}, {0, 1}}



Set theory refresher III

ℕ∗ = {𝑥 ∈ ℕ | 𝑥 ≥ 1} ⊆ ℕ ⊆ ℤ ⊆ ℝ

|∅| = 0

For any set 𝑆:

∅ ⊆ 𝑆 𝑆 ⊆ 𝑆

𝑆 ∪ ∅ = 𝑆 𝑆 ∩ ∅ = ∅

∅ ∈ 𝒫(𝑆) 𝑆 ∈ 𝒫(𝑆)



Basic concepts



Alphabet

➢ A finite set of symbols denoted by Σ.

Examples:

● English alphabet: Σen = {a, b, c, ..., z}
● Binary alphabet: Σbin = {0, 1}
● Programming alphabet: Σprog = {letters, digits, operators, brackets, ...}



Word

➢ Any finite sequence (i.e. string) of symbols (i.e. letters) from the alphabet.

Examples:

● ε (empty word)
● ‘hello’ is a valid English word 
● ‘101’ is a string in binary
● ‘x = y + 2’ is a string in most programming languages



Length operator

➢ For any word 𝑤, |𝑤| denotes the number of symbols in 𝑤.

Examples:

● |ε| = 0
● |‘hello’| = 5
● |‘101’| = 3



Concatenation

➢ For any words 𝑢 and 𝑣, its concatenation 𝑢𝑣 (or 𝑢.𝑣) is the word formed by 
adding 𝑣 at the end of 𝑢.

Notation: 𝑢.𝑢.𝑢…𝑢 = 𝑢k 
     k times



Special sets

● Σk ≜ {𝑤 | |𝑤| = k and 𝑤 is a string over Σ}, for k ≥ 1
● Σ0 ≜ {ε}, regardless of Σ
● Σ1 = Σ
● Σ∗ ≜ ⋃k ≥ 0Σ

k

Note: if Σ = ∅, then Σ∗ = {ε}.

Examples: for Σbin = {0, 1}

● Σbin
1 = {0, 1}

● Σbin
2 = {00, 01, 10, 11}

● Σbin
3 = {000, 001, 010, 011, 100, 101, 110, 111}



Language

➢ A set of words over an alphabet Σ, that is a subset of Σ∗.  

Examples:

● English dictionary: all valid English words
● Binary strings: all sequences of 0s and 1s
● Binary numbers: all sequences of 0s and 1s without leading 0s
● Python: all syntactically valid Python programs



Letters, words and language

Language: English dictionary Alphabet?
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Letters, words and language

Language: English dictionary Alphabet? English morphemes

Language: English sentences Alphabet? English words

Language: Morse code Alphabet? {., –}
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Finite automata

➢ An abstract model of computation that, starting from an initial state, reads an 
input (i.e. a word) from left to right and accepts iff it ends up in an accept 
state after reading the whole input.

➢ A finite automaton 𝐴 recognises a language 𝐿 iff its set of accepted words ℒ
(𝐴) = 𝐿.

Elements:

● 𝑄: a finite set of states
● Σ: an alphabet
● 𝑞0: the initial state
● 𝐹 ⊆ 𝑄: final states
● δ: a transition function 
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Next steps

● Regular languages
● Formal grammars
● Complexity hierarchy
● First-order logic
● Predicate logic
● (General) quantifiers
● λ-calculus


